2.66666666+3n=4/5n+12

Simple and best practice solution for 2.66666666+3n=4/5n+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.66666666+3n=4/5n+12 equation:



2.66666666+3n=4/5n+12
We move all terms to the left:
2.66666666+3n-(4/5n+12)=0
Domain of the equation: 5n+12)!=0
n∈R
We get rid of parentheses
3n-4/5n-12+2.66666666=0
We multiply all the terms by the denominator
3n*5n-12*5n+(2.66666666)*5n-4=0
We multiply parentheses
3n*5n-12*5n+13.3333333n-4=0
Wy multiply elements
15n^2-60n+13.3333333n-4=0
We add all the numbers together, and all the variables
15n^2-46.6666667n-4=0
a = 15; b = -46.6666667; c = -4;
Δ = b2-4ac
Δ = -46.66666672-4·15·(-4)
Δ = 2417.77778089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46.6666667)-\sqrt{2417.77778089}}{2*15}=\frac{46.6666667-\sqrt{2417.77778089}}{30} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46.6666667)+\sqrt{2417.77778089}}{2*15}=\frac{46.6666667+\sqrt{2417.77778089}}{30} $

See similar equations:

| -12=x÷4-3 | | 8q+12=4(3+1q) | | 2(5x-6)-3(x-4)/7=x+6 | | 9x–4+3x+1=21 | | 2x+3(x-4)=4x-7 | | 7(6-2a)=5(7-1) | | -(3k+8)=4(k+5) | | -12-x=45 | | m/3+8=9 | | -12(q+16)=12 | | -4=a+10/2 | | -5(4x-2)=-150 | | N+6+n+135+62+151+140=720 | | )10n=40 | | 8/9x+20=11x | | 200-100x-x^2=0 | | X-2Y+z=-11 | | 30x=39x | | 8(y+4)=7y=38 | | 13y-9y-7=62.80 | | a+2/3a=180 | | -8+7(7r+5)=-120 | | -41=-7x+4(2x-12) | | 3/4m+1/4m-6=15 | | 32+5b=7(6b-6) | | 3x-12=3x+10 | | 589=7×84+n | | 13y-38=234 | | -3u-3=2(u+1) | | 2d+10=6d-105 | | x-(4x-7)=5x-(x=21) | | 4(9)+y=8 |

Equations solver categories