2/(3x+8)=2x+24

Simple and best practice solution for 2/(3x+8)=2x+24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/(3x+8)=2x+24 equation:



2/(3x+8)=2x+24
We move all terms to the left:
2/(3x+8)-(2x+24)=0
Domain of the equation: (3x+8)!=0
We move all terms containing x to the left, all other terms to the right
3x!=-8
x!=-8/3
x!=-2+2/3
x∈R
We get rid of parentheses
2/(3x+8)-2x-24=0
We multiply all the terms by the denominator
-2x*(3x+8)-24*(3x+8)+2=0
We multiply parentheses
-6x^2-16x-72x-192+2=0
We add all the numbers together, and all the variables
-6x^2-88x-190=0
a = -6; b = -88; c = -190;
Δ = b2-4ac
Δ = -882-4·(-6)·(-190)
Δ = 3184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3184}=\sqrt{16*199}=\sqrt{16}*\sqrt{199}=4\sqrt{199}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-88)-4\sqrt{199}}{2*-6}=\frac{88-4\sqrt{199}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-88)+4\sqrt{199}}{2*-6}=\frac{88+4\sqrt{199}}{-12} $

See similar equations:

| 18x+75=25x | | -3(7+3k)-(8k+3k)=-17 | | 3x+8=2(2x+24) | | 2x+14-x=7+5-5 | | 12(p-2(1/3))=-8 | | g-17g+7=-9 | | g−17g−-7=-9 | | x/3,8+x=8,5/12 | | 4x-9x+59=2x+38 | | q/(-5)=30 | | 108=4y-2+3y+4y-2+3y | | C(20)=25n+250 | | 5x−(10−3x)+20=58 | | 4(3x-5)-2=4(x-5)+30 | | 2g+2(-8+5g)=1-9 | | (0.8)^2x=0.45 | | -36=6(x-6) | | 16r−14r=14 | | 5y+2=y+7= | | -7(-8-6n)=140 | | +2x-2=2x+8 | | x+.81=15 | | 7+11x=37 | | 0x-2=2x+8 | | 2x-6+3x/5+30=180 | | (x-0.5)/(x+0.5)=2x/x-2 | | u/9=7/8 | | 1/4m+2=-5 | | 8-8i=-1i-27 | | 4^(3x-2)=85 | | (y)=0.7 | | 5(1-2p)=3p |

Equations solver categories