2/1.25x=10-2.75x

Simple and best practice solution for 2/1.25x=10-2.75x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/1.25x=10-2.75x equation:



2/1.25x=10-2.75x
We move all terms to the left:
2/1.25x-(10-2.75x)=0
Domain of the equation: 1.25x!=0
x!=0/1.25
x!=0
x∈R
We add all the numbers together, and all the variables
2/1.25x-(-2.75x+10)=0
We get rid of parentheses
2/1.25x+2.75x-10=0
We multiply all the terms by the denominator
(2.75x)*1.25x-10*1.25x+2=0
We add all the numbers together, and all the variables
(+2.75x)*1.25x-10*1.25x+2=0
We multiply parentheses
2x^2-10*1.25x+2=0
Wy multiply elements
2x^2-10x+2=0
a = 2; b = -10; c = +2;
Δ = b2-4ac
Δ = -102-4·2·2
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{21}}{2*2}=\frac{10-2\sqrt{21}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{21}}{2*2}=\frac{10+2\sqrt{21}}{4} $

See similar equations:

| -9+x/2=16 | | -2(3x–4)=-2x+2 | | 27=-8(2v-7) | | 6x+36=5x-36 | | ((8x+11)+(9x-7))/2=8x+6 | | 25=2(x-7) | | 8e+15+-3e=10 | | —2x=50 | | -g=2/1/2g-3 | | p+2/7=10 | | 9(x+3)^2=4 | | 12x+2x=14 | | 1/2/x=10/4 | | -(5x+7)=33 | | X^-6x-16=0 | | 180=11-v | | ((13x+7)-60)/2=5x-10 | | -2x+5x=6 | | 3+8e(5-e)=10 | | -0.3x=27 | | 4x2x=12 | | y/7+4=7 | | 10-0.25x=0.5x+4 | | 22x+4=20x+12 | | -3=(2c-5) | | (131+(18x+1))/2=26x-2 | | -14=x/7 | | 15=-2x3x+50 | | 5-3x=3-5 | | 3(2x-1)-4x=7x+4 | | 4^x+8=80 | | 7(d-87)=21 |

Equations solver categories