If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3(-3x)=1/9(2x+1)
We move all terms to the left:
2/3(-3x)-(1/9(2x+1))=0
Domain of the equation: 3(-3x)!=0
x∈R
Domain of the equation: 9(2x+1))!=0We calculate fractions
x∈R
(18x2/(3(-3x)*9(2x+1)))+(-3x0/(3(-3x)*9(2x+1)))=0
We calculate terms in parentheses: +(18x2/(3(-3x)*9(2x+1))), so:
18x2/(3(-3x)*9(2x+1))
We multiply all the terms by the denominator
18x2
We add all the numbers together, and all the variables
18x^2
Back to the equation:
+(18x^2)
We calculate terms in parentheses: +(-3x0/(3(-3x)*9(2x+1))), so:We get rid of parentheses
-3x0/(3(-3x)*9(2x+1))
We multiply all the terms by the denominator
-3x0
We add all the numbers together, and all the variables
-3x
Back to the equation:
+(-3x)
18x^2-3x=0
a = 18; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·18·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*18}=\frac{6}{36} =1/6 $
| 5(3-7n)=4(-12-8n) | | (4)n-5+7=35 | | 5r–7=2r+14 | | 2x^2-7x=192 | | 8x+0.4=48.4 | | 4-3/2a=3/1/16a | | -63=1-8w | | -3=v/46 | | 200=3x-6 | | 216=8(-7x-1) | | 27=x/5+8 | | 7x/8-1=2x/9 | | 117=-9d+9 | | 27–3x=3x+27 | | 1-x=5x-8 | | 48=1/2x=10 | | (x-8)/3=7 | | 4-3/2a=3/1/16 | | 29=8r-3 | | 5-4v=15 | | 7(7c-1)+4c=13(3c+-2) | | 56=k/82 | | 10m-6m+27=9m-8+1 | | Y=x+4=0 | | 5+n/5=2 | | 3^2(x-4)=(1/3)^7-6x | | 3x-12+5=14 | | 4v-5=15 | | 3(q+34)=2 | | 4096^(2x-4)=16 | | 4v-5=12 | | 54=4x/4 |