If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3(12x+27)-16=-1/4(24x-20)
We move all terms to the left:
2/3(12x+27)-16-(-1/4(24x-20))=0
Domain of the equation: 3(12x+27)!=0
x∈R
Domain of the equation: 4(24x-20))!=0We calculate fractions
x∈R
(8x2/(3(12x+27)*4(24x-20)))+(-(-3x1)/(3(12x+27)*4(24x-20)))-16=0
We calculate terms in parentheses: +(8x2/(3(12x+27)*4(24x-20))), so:
8x2/(3(12x+27)*4(24x-20))
We multiply all the terms by the denominator
8x2
We add all the numbers together, and all the variables
8x^2
Back to the equation:
+(8x^2)
We calculate terms in parentheses: +(-(-3x1)/(3(12x+27)*4(24x-20))), so:a = 8; b = 3; c = -16;
-(-3x1)/(3(12x+27)*4(24x-20))
We add all the numbers together, and all the variables
-(-3x)/(3(12x+27)*4(24x-20))
We multiply all the terms by the denominator
-(-3x)
We get rid of parentheses
3x
Back to the equation:
+(3x)
Δ = b2-4ac
Δ = 32-4·8·(-16)
Δ = 521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{521}}{2*8}=\frac{-3-\sqrt{521}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{521}}{2*8}=\frac{-3+\sqrt{521}}{16} $
| -19-5x=11 | | 11.3c+12.8=7.5+35.6 | | 5r+20/10=2r-4/2 | | -5(5z-1)-2=-5(5z-3)-14 | | -5.5x+0.42=1.78 | | k/6.8+61.1=38.2 | | 71=m+18+23 | | y=-17=-34 | | 8(3x–5)=16 | | 2(x+4)+7=-7(x-2) | | 57=n+40 | | 5x+90=860 | | 16(3y-1)+2=5y | | f-20=28 | | 2+3y=40 | | 3x+1=3+2x+8* | | 8(4)=3(p+6) | | -7/c=2 | | 8(4)=3(p+6 | | x+24303x=39589 | | 5(5x13)=-10 | | -8(x-40=49(x-13) | | 4x+3(x+2)=48 | | 0.09x+0.05(80)=0.07(x+80) | | 4x-1=1x+6 | | h-94=2 | | 2x+8=-x-10 | | 50b=560 | | N+10=9n-22 | | .25(2x+12)+4x=33 | | 9.2x-3=107.4 | | 3(-20x-3)+11=15(-4x+2)-28 |