If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3(27x+15)-1=-1/4(16x-20)
We move all terms to the left:
2/3(27x+15)-1-(-1/4(16x-20))=0
Domain of the equation: 3(27x+15)!=0
x∈R
Domain of the equation: 4(16x-20))!=0We calculate fractions
x∈R
(8x1/(3(27x+15)*4(16x-20)))+(-(-3x2)/(3(27x+15)*4(16x-20)))-1=0
We calculate terms in parentheses: +(8x1/(3(27x+15)*4(16x-20))), so:
8x1/(3(27x+15)*4(16x-20))
We multiply all the terms by the denominator
8x1
We add all the numbers together, and all the variables
8x
Back to the equation:
+(8x)
We calculate terms in parentheses: +(-(-3x2)/(3(27x+15)*4(16x-20))), so:determiningTheFunctionDomain 3x^2+8x-1=0
-(-3x2)/(3(27x+15)*4(16x-20))
We add all the numbers together, and all the variables
-(-3x^2)/(3(27x+15)*4(16x-20))
We multiply all the terms by the denominator
-(-3x^2)
We get rid of parentheses
3x^2
Back to the equation:
+(3x^2)
a = 3; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·3·(-1)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{19}}{2*3}=\frac{-8-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{19}}{2*3}=\frac{-8+2\sqrt{19}}{6} $
| 1/4x-1/5x=20 | | 7/x-4=48 | | 90=6x+13 | | 90=(6x+13) | | 90=(6x)(x+13) | | _2b=1 | | 3x+15+x+10=90 | | 3x-15+x+10+2x-5=180 | | X-9x5=38 | | 7-(9x5)=38 | | 4(3z-2z)=36 | | 6x+24/6=6 | | 5(x+2=-20 | | 34919,99=x*0,4x | | 3(4w+w)=30 | | 7x-56=28 | | 2-9(x+1)=20 | | x^2+12x-162=0 | | 6520=x+(0,4x) | | 6520=x+0,4x | | 1x-1=5x-5 | | x/1-x=2.49 | | 240725,8=120000+37805,81+x+(0,4*(x+120000)) | | 6c=2×10 | | 5/8+2.5=3/8+1.5+14x | | 32x+25-21x=10 | | 3(x+1)+9(x-3)=-8x+11 | | 3/2+2.2-1/2x=4/3+x | | (4x-3)/4x-4=1/5 | | x+(x.25)=1500 | | (4x+13)=(5x-12) | | 180885,8+(0,4(120000+x))=240725,80 |