2/3(m-2)=3/m+11/12

Simple and best practice solution for 2/3(m-2)=3/m+11/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3(m-2)=3/m+11/12 equation:


D( m )

m = 0

m = 0

m = 0

m in (-oo:0) U (0:+oo)

(2/3)*(m-2) = 3/m+11/12 // - 3/m+11/12

(2/3)*(m-2)-(3/m)-(11/12) = 0

(2/3)*(m-2)-3*m^-1-11/12 = 0

2/3*(m-2)-3/m-11/12 = 0

(2/3*12*m*(m-2))/(12*m)+(-3*12)/(12*m)+(-11*m)/(12*m) = 0

2/3*12*m*(m-2)-11*m-3*12 = 0

8*m^2-16*m-11*m-36 = 0

8*m^2-27*m-36 = 0

8*m^2-27*m-36 = 0

8*m^2-27*m-36 = 0

DELTA = (-27)^2-(-36*4*8)

DELTA = 1881

DELTA > 0

m = (1881^(1/2)+27)/(2*8) or m = (27-1881^(1/2))/(2*8)

m = (3*209^(1/2)+27)/16 or m = (27-3*209^(1/2))/16

(m-((27-3*209^(1/2))/16))*(m-((3*209^(1/2)+27)/16)) = 0

((m-((27-3*209^(1/2))/16))*(m-((3*209^(1/2)+27)/16)))/(12*m) = 0

((m-((27-3*209^(1/2))/16))*(m-((3*209^(1/2)+27)/16)))/(12*m) = 0 // * 12*m

(m-((27-3*209^(1/2))/16))*(m-((3*209^(1/2)+27)/16)) = 0

( m-((27-3*209^(1/2))/16) )

m-((27-3*209^(1/2))/16) = 0 // + (27-3*209^(1/2))/16

m = (27-3*209^(1/2))/16

( m-((3*209^(1/2)+27)/16) )

m-((3*209^(1/2)+27)/16) = 0 // + (3*209^(1/2)+27)/16

m = (3*209^(1/2)+27)/16

m in { (27-3*209^(1/2))/16, (3*209^(1/2)+27)/16 }

See similar equations:

| 2p-5=-23+4p | | 3x-15=-29+5x | | 75.00+0.10d=400.00 | | (4v^2+9v-10)+(15v^2-7v+10)+(v-2)= | | 4(x/2+1)=2 | | 30=-5/2v | | 4n+5=qe | | 0.10x+0.45(70)=36.5 | | 8x(x-1)=7x^2+4x | | 4x^2+4y^2-4x-12y-26=0 | | 2x(24x-24)-3x=9x-24 | | 2x(4x-4)-3x=9x-24 | | 7x-30=5x-8 | | 4(3-x)^4/3=0 | | 1/8=k-10/k | | 4(3-x)^4/3 | | 3(18x-24)-2x=8x-4 | | 3(3x-4)-2x=8x-4 | | 1/7=n+5/6 | | 3(2x-3)-2x=8x-2 | | 1/3y+2/3y=2 | | 1966+43w=3200 | | 1966+43w=320 | | 4y-39=8y-21 | | 2/3n-9 | | 2x-2(3x-9)=6(2x-7)+6x | | 5x-2(2x-8)=3(2x-7)+6x | | -5=7x-6 | | 2/3=-7/9+v | | 8*8+9y=72 | | 5t^2-6t-28=0 | | 5x-4=71 |

Equations solver categories