2/3*d=109

Simple and best practice solution for 2/3*d=109 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3*d=109 equation:



2/3*d=109
We move all terms to the left:
2/3*d-(109)=0
Domain of the equation: 3*d!=0
d!=0/1
d!=0
d∈R
We multiply all the terms by the denominator
-109*3*d+2=0
Wy multiply elements
-327d*d+2=0
Wy multiply elements
-327d^2+2=0
a = -327; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-327)·2
Δ = 2616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2616}=\sqrt{4*654}=\sqrt{4}*\sqrt{654}=2\sqrt{654}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{654}}{2*-327}=\frac{0-2\sqrt{654}}{-654} =-\frac{2\sqrt{654}}{-654} =-\frac{\sqrt{654}}{-327} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{654}}{2*-327}=\frac{0+2\sqrt{654}}{-654} =\frac{2\sqrt{654}}{-654} =\frac{\sqrt{654}}{-327} $

See similar equations:

| 80=38+7x | | -4(-3p+19)=-20+5p | | -1=n+2/10 | | -50=x+-10 | | 19a-14a-a+5a=18 | | 20+x/7=22 | | y=122 | | u/4=13/3 | | 8a-4a-3a=13 | | 5z–3.2=8z+2.8 | | 17d-10d-3d-3d=12 | | -1/2=1/3x-4/3x | | 7+3q-11=-12q-19 | | 8c-7c+3c=16 | | 8(5+4m)+11=-5(3-7m) | | s+9=-29 | | 3n–n=-2 | | 4/8x=2/4 | | F(-1)=3x+2 | | -20p+14=-10-15p-7p | | 57=x/3+13 | | 5x×8x= | | -6+x|4=5 | | 15.5=3x+3.25 | | 5(6x+1)=-205 | | 3(8m+5)=4(6m-7)-13 | | 8j-2=-10(j=-1) | | 14-b=14.4 | | 3x-55/17=7 | | -6+x÷4=5 | | 4e-8=3e-4(e=4) | | x2+2x–255=0 |

Equations solver categories