2/36j+9=3j+7

Simple and best practice solution for 2/36j+9=3j+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/36j+9=3j+7 equation:



2/36j+9=3j+7
We move all terms to the left:
2/36j+9-(3j+7)=0
Domain of the equation: 36j!=0
j!=0/36
j!=0
j∈R
We get rid of parentheses
2/36j-3j-7+9=0
We multiply all the terms by the denominator
-3j*36j-7*36j+9*36j+2=0
Wy multiply elements
-108j^2-252j+324j+2=0
We add all the numbers together, and all the variables
-108j^2+72j+2=0
a = -108; b = 72; c = +2;
Δ = b2-4ac
Δ = 722-4·(-108)·2
Δ = 6048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6048}=\sqrt{144*42}=\sqrt{144}*\sqrt{42}=12\sqrt{42}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{42}}{2*-108}=\frac{-72-12\sqrt{42}}{-216} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{42}}{2*-108}=\frac{-72+12\sqrt{42}}{-216} $

See similar equations:

| 0.5m-0.75=2.15 | | 9n+5=4n-15 | | t=4+1 | | -4n+3=-49 | | x=4xx+1 | | -6=3y+5(y-2) | | 9x-(4x-6)=17+2(3-+8) | | t^2+t-1.2=0 | | f-13=22 | | 2(4s-1)=-2(-8+2s) | | 2x^2-1=2^x | | 9x=+210=4x+140 | | 2(2x+4)+10=x | | 3(x-2)+7=5-(x+3) | | 3r-7=r+8 | | 2(3x-6)=-3(2x+4) | | x2=9/625 | | 2/3x+8=1/3-2 | | 1-w=6-6w | | 20-c=10c-2 | | 6L+20s=270(-2) | | 6L+20s=270 | | 4(9-x)=3(2x+2) | | 2(a+)-7=9 | | .45x=36 | | 8^1+1=16(2^a-1) | | f-13=22/35 | | 49x3-x=0 | | 4(3x-2)=33 | | f-13=22;35 | | 1290=h/10+h/5 | | a+8=5;0 |

Equations solver categories