2/3b+b=20-b

Simple and best practice solution for 2/3b+b=20-b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3b+b=20-b equation:



2/3b+b=20-b
We move all terms to the left:
2/3b+b-(20-b)=0
Domain of the equation: 3b!=0
b!=0/3
b!=0
b∈R
We add all the numbers together, and all the variables
2/3b+b-(-1b+20)=0
We add all the numbers together, and all the variables
b+2/3b-(-1b+20)=0
We get rid of parentheses
b+2/3b+1b-20=0
We multiply all the terms by the denominator
b*3b+1b*3b-20*3b+2=0
Wy multiply elements
3b^2+3b^2-60b+2=0
We add all the numbers together, and all the variables
6b^2-60b+2=0
a = 6; b = -60; c = +2;
Δ = b2-4ac
Δ = -602-4·6·2
Δ = 3552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3552}=\sqrt{16*222}=\sqrt{16}*\sqrt{222}=4\sqrt{222}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{222}}{2*6}=\frac{60-4\sqrt{222}}{12} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{222}}{2*6}=\frac{60+4\sqrt{222}}{12} $

See similar equations:

| 14=q/4+18 | | 1/2x+2=-3/4x+10 | | -9a2=-90 | | -35=-725a | | 5-3a=7a+5 | | 9b-5=5b+31 | | w/(-3)+(-11)=-8 | | x3-6=9 | | 2p-3=3p-5 | | 5x-20=x+36 | | 3x-3+1x=4x+2 | | 5s+1=2s+43 | | x-(5.1)=4.8 | | 7x+48=x | | 206=5x+41 | | 15-2m=3 | | 8z+2=6z+30 | | 4(v+7)=-4(3v-4)+2v | | k-8=20-k | | 15–2m=3 | | 3a+4a+4=88-7 | | 12-n=2n | | 15c=-75 | | 12u-5=9u-5 | | 3(4x+1)=14x+1-2x+2 | | 9-b=3b-15 | | 24-n=16 | | 12c=+84 | | -(4x+4)-(-3x-9)=13 | | 4(2p+6)=8(3+3p | | 5j-1=j+27 | | -7c=+63 |

Equations solver categories