2/3l+1/5l=13/15

Simple and best practice solution for 2/3l+1/5l=13/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3l+1/5l=13/15 equation:



2/3l+1/5l=13/15
We move all terms to the left:
2/3l+1/5l-(13/15)=0
Domain of the equation: 3l!=0
l!=0/3
l!=0
l∈R
Domain of the equation: 5l!=0
l!=0/5
l!=0
l∈R
We add all the numbers together, and all the variables
2/3l+1/5l-(+13/15)=0
We get rid of parentheses
2/3l+1/5l-13/15=0
We calculate fractions
(-975l^2)/225l^2+150l/225l^2+45l/225l^2=0
We multiply all the terms by the denominator
(-975l^2)+150l+45l=0
We add all the numbers together, and all the variables
(-975l^2)+195l=0
We get rid of parentheses
-975l^2+195l=0
a = -975; b = 195; c = 0;
Δ = b2-4ac
Δ = 1952-4·(-975)·0
Δ = 38025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{38025}=195$
$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(195)-195}{2*-975}=\frac{-390}{-1950} =1/5 $
$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(195)+195}{2*-975}=\frac{0}{-1950} =0 $

See similar equations:

| 3(-3n-2)=-51 | | f(-1/2)+10=6 | | -3m+8=-13-6m | | -1y-(-2)=-13 | | −12x−11=25−11(x+1) | | 2/3(6x+3)=5x+6-3x | | 2/5x-1/10=6/20 | | 10(2x−6)=20x−60 | | 5x-3(x-5)=-9+4x+8 | | 2(m+3)=–10 | | -3(y+8)=-30 | | 500+35r=55r+0 | | -4(2m+8)=-8 | | 30/6x-2/6=78/6 | | -3(y+1)=3y-9+2(2y+4) | | (h-7)2+9=3 | | 3x−5x+2x−9=10 | | h-5}−5h​+6=3 | | 2(2x+1.5)=18-x | | 0.6(x+2)=0.555(2x+3) | | 35r+55=500 | | x+87=x+67=40 | | 5k+29=180 | | y=70+50 | | -3*1/6y*18=72 | | 4x-7+7x=-2+6x-20 | | 12=-11h+34 | | -5(-4u+1)-3u=5(u-2)-1 | | 180=28+x+(x+70) | | 3y+7=2y–8 | | -5r+5=4r+10 | | 4(-2x+5)=4 |

Equations solver categories