If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3p+3(2/3p-8)=-10
We move all terms to the left:
2/3p+3(2/3p-8)-(-10)=0
Domain of the equation: 3p!=0
p!=0/3
p!=0
p∈R
Domain of the equation: 3p-8)!=0We add all the numbers together, and all the variables
p∈R
2/3p+3(2/3p-8)+10=0
We multiply parentheses
2/3p+6p-24+10=0
We multiply all the terms by the denominator
6p*3p-24*3p+10*3p+2=0
Wy multiply elements
18p^2-72p+30p+2=0
We add all the numbers together, and all the variables
18p^2-42p+2=0
a = 18; b = -42; c = +2;
Δ = b2-4ac
Δ = -422-4·18·2
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-18\sqrt{5}}{2*18}=\frac{42-18\sqrt{5}}{36} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+18\sqrt{5}}{2*18}=\frac{42+18\sqrt{5}}{36} $
| 1/2x5=1/4x+8 | | x^2+481-12120=0 | | x2-12x-133=280 | | g/0,21=39/1,05+2 | | 3m^2+5m=-7m-18 | | 6y-9=2(y-8) | | (D^6-1)y=0 | | (6x-1)/(x+3)=0 | | 14t^2-5t-6=0 | | 3^x+3^-x=2 | | 7x/4+2=5 | | 30-2x+42=28 | | 75=A*10^k | | 4x-8+3x+3=180 | | 8+3x=9+2x | | x=500x50 | | -3.5+-0.5y-3=-8 | | -3.5+-0.5y-y=-8 | | -5q-q=84 | | 5x-3=4+x | | x-8/4^4=2.2 | | (4-x)(5x-1)=0 | | 2x2+9+-1=0 | | -5{x+1}=10 | | 90-5x=6+x | | 50/250=8x | | 4–24=b | | 10y+y=72 | | -2X-7(4x+15)=-15 | | 0.5x=0.28x | | 2x+1/3x-2=5/9 | | 3x+10=250 |