If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x+(x-12)+x=180
We move all terms to the left:
2/3x+(x-12)+x-(180)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
x+2/3x+(x-12)-180=0
We get rid of parentheses
x+2/3x+x-12-180=0
We multiply all the terms by the denominator
x*3x+x*3x-12*3x-180*3x+2=0
Wy multiply elements
3x^2+3x^2-36x-540x+2=0
We add all the numbers together, and all the variables
6x^2-576x+2=0
a = 6; b = -576; c = +2;
Δ = b2-4ac
Δ = -5762-4·6·2
Δ = 331728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{331728}=\sqrt{16*20733}=\sqrt{16}*\sqrt{20733}=4\sqrt{20733}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-576)-4\sqrt{20733}}{2*6}=\frac{576-4\sqrt{20733}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-576)+4\sqrt{20733}}{2*6}=\frac{576+4\sqrt{20733}}{12} $
| -3(u+1)=5u-7+2(4u+6) | | 2/1=2x/2 | | -3(-7w+6)-w=2(w-1)-7 | | (153/10)=(17/5)(x+3) | | 5*2^(x+1)=60 | | 5*2(x+1)=60 | | (b-8)(b-8)= | | 2x^2-40x=-172 | | 2w^2+2w-180=0 | | 2(8w-3)=-38 | | 8+-4/x=-2 | | 12=4(x-7)-8x | | c−29=11 | | ∣c−29∣=11 | | 83x+140=12x+2 | | -2/9=v+3 | | F(x)=14x3-17x2-16x+34-46 | | -1/2+w=4/5 | | 3x–4=7x=11 | | 3x–4=7;x=11 | | 10=M(4)+b | | 3=x+27/6 | | 2x+23+x+21=6 | | 3=8n | | 7x+21=2(x+3) | | -9=3/7u | | -2(w-8)=2w+4 | | F(x)=5x^2-9x+3 | | 4x–6=9x+12 | | 42500=(.0109)x | | 108=x+x+3+x+6 | | 0=x³-9x-440 |