2/3x+-2/3=8/x+6

Simple and best practice solution for 2/3x+-2/3=8/x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+-2/3=8/x+6 equation:



2/3x+-2/3=8/x+6
We move all terms to the left:
2/3x+-2/3-(8/x+6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x+6)!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(8/x+6)-2/3=0
We get rid of parentheses
2/3x-8/x-6-2/3=0
We calculate fractions
2x/27x^2+(-216x)/27x^2+(-2x)/27x^2-6=0
We multiply all the terms by the denominator
2x+(-216x)+(-2x)-6*27x^2=0
Wy multiply elements
-162x^2+2x+(-216x)+(-2x)=0
We get rid of parentheses
-162x^2+2x-216x-2x=0
We add all the numbers together, and all the variables
-162x^2-216x=0
a = -162; b = -216; c = 0;
Δ = b2-4ac
Δ = -2162-4·(-162)·0
Δ = 46656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{46656}=216$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-216)-216}{2*-162}=\frac{0}{-324} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-216)+216}{2*-162}=\frac{432}{-324} =-1+1/3 $

See similar equations:

| 1/2x-9=3/4x+11 | | 9/s=54 | | .5x+6=1.5(x+6) | | 8=y/5-7 | | -6+p=7p | | a5+14=20 | | (8x-17)=5x+19) | | 12x+20=9x+35 | | 4-(x-4)=3x | | 3x-12=11x-28 | | 3(y+5)=2y+3y-1 | | 16=0.3a | | 6x-55+3x-16=90 | | g/7=12+9 | | 3x-12=11x-28 | | 2m+15=55 | | y-11/3=4/3 | | 5x+9=12x-33 | | 9y–13=–4 | | 16x+40=22x+4 | | 16x+40=22x+4 | | Y=3/x-1.25 | | 7n^2+4n-14=0 | | 4.8/b=7.2/7.6 | | 2x+15=7x-30 | | 2)-6(n+9)=4(5n–7) | | 9x-1=14x-36 | | 4(-5x-1)=2 | | f²-(4f-2f²)=2f²+4f-8 | | 9.1/20=a/40 | | 1.7=xx0.3 | | 4(3x-7)=-12 |

Equations solver categories