2/3x+-5=1/2x+-3

Simple and best practice solution for 2/3x+-5=1/2x+-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+-5=1/2x+-3 equation:



2/3x+-5=1/2x+-3
We move all terms to the left:
2/3x+-5-(1/2x+-3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x+-3)!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(1/2x-3)-5+=0
We add all the numbers together, and all the variables
2/3x-(1/2x-3)=0
We get rid of parentheses
2/3x-1/2x+3=0
We calculate fractions
4x/6x^2+(-3x)/6x^2+3=0
We multiply all the terms by the denominator
4x+(-3x)+3*6x^2=0
Wy multiply elements
18x^2+4x+(-3x)=0
We get rid of parentheses
18x^2+4x-3x=0
We add all the numbers together, and all the variables
18x^2+x=0
a = 18; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·18·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*18}=\frac{-2}{36} =-1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*18}=\frac{0}{36} =0 $

See similar equations:

| 3x^2+0.5x−1.5=0 | | 3x^2+.5x−1.5=0 | | 2(3y+-8)=14 | | 3x^2+1/2x−3/2=0 | | 2+2n-2n=-5-3n | | 3/x=13/80 | | 3(z-2=2(z-1) | | x^2-16/x+4=x-4 | | 4/5x+1/4=-1/5x-2/4 | | 2x+9=13−7x | | -2(4y+-3)=-34 | | x²+5x-7=0 | | x/8=6/32 | | 8x-2=5x+3x-2 | | 5x=6/12 | | 5x+3(2-×)=2x+6 | | 6-7(5-5x)=0 | | 1/4=1/4×h+4 | | 9-8(4x+6)=5 | | 2x-3=1-2x-x2 | | 1/8x+3=-6 | | X/x+11=15 | | 54=16+x | | x-41=80 | | 2x-3=1-2x-x | | 7x+2=4x+3x+5 | | 3/8(-3x-4)=2 | | x/5=14/38 | | 5x+1.2=7.7 | | 10x+3−3x=−8x−20+x | | 3+x/6=1−3(4−7) | | 3+x÷6=1−3(4−7) |

Equations solver categories