2/3x+12=4/5x

Simple and best practice solution for 2/3x+12=4/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+12=4/5x equation:



2/3x+12=4/5x
We move all terms to the left:
2/3x+12-(4/5x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(+4/5x)+12=0
We get rid of parentheses
2/3x-4/5x+12=0
We calculate fractions
10x/15x^2+(-12x)/15x^2+12=0
We multiply all the terms by the denominator
10x+(-12x)+12*15x^2=0
Wy multiply elements
180x^2+10x+(-12x)=0
We get rid of parentheses
180x^2+10x-12x=0
We add all the numbers together, and all the variables
180x^2-2x=0
a = 180; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·180·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*180}=\frac{0}{360} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*180}=\frac{4}{360} =1/90 $

See similar equations:

| 4b-8=(-4) | | (2/9)+(3/4)=n | | 6+7x=16x-2 | | 5{4(x+3)-2(x-1)}=72 | | x=5x–92 | | x(2+-0.25)=5 | | 11p^2=1+8p | | x+7+4x-18+5(x-1)+2x+1+7x-39=540 | | n-(2n-6)=2 | | (4a+31)°=111° | | 87x-1=86-x | | 10x^2+45x-1=0 | | 0.25=0.95^x | | 836-a=32 | | 3x²+11=21+2x | | P=2x+820 | | 994-a=482 | | 6x-5/5=6x-1 | | 5(41)=9c+160 | | 27x*3+1=0 | | 6x-1=5x=2 | | -5t^2-5t+35=0 | | -6.76+b2=9 | | 33x-2+50=180 | | 590-a=280 | | 1.6x^2-3.2x+1.6=x^2 | | -17+c/7=-8 | | 0.25x+15+40=45+0.35x | | -24+s/3=-29 | | 580-a=430 | | 800-a=50 | | f/6+12=18 |

Equations solver categories