2/3x+1=7/25x+3

Simple and best practice solution for 2/3x+1=7/25x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+1=7/25x+3 equation:



2/3x+1=7/25x+3
We move all terms to the left:
2/3x+1-(7/25x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 25x+3)!=0
x∈R
We get rid of parentheses
2/3x-7/25x-3+1=0
We calculate fractions
50x/75x^2+(-21x)/75x^2-3+1=0
We add all the numbers together, and all the variables
50x/75x^2+(-21x)/75x^2-2=0
We multiply all the terms by the denominator
50x+(-21x)-2*75x^2=0
Wy multiply elements
-150x^2+50x+(-21x)=0
We get rid of parentheses
-150x^2+50x-21x=0
We add all the numbers together, and all the variables
-150x^2+29x=0
a = -150; b = 29; c = 0;
Δ = b2-4ac
Δ = 292-4·(-150)·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-29}{2*-150}=\frac{-58}{-300} =29/150 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+29}{2*-150}=\frac{0}{-300} =0 $

See similar equations:

| x÷-4=-6 | | -2+7(5x-3)=-268 | | 55+x=45 | | x^2+26x=16 | | 0.77+-4u=-14.83 | | 3x+18=0* | | 0.77+–4u=–14.83 | | 2x(7-5x)=21 | | 3=-3(n-4) | | 1+4x+6x=21 | | 5x-54=59 | | 0=-2(x+3)2+11 | | x+77=69 | | m/3+-9.4=-11.9 | | -12=6a-4a | | 7x-33=10x+15 | | -16=-f+-7 | | 4r-8=52 | | 7q-17=53 | | -6-7a-2=-1 | | 4x²-2x+5=0 | | 10x-11x=7x+22 | | 3/5q=4/9 | | 12=k/6+19 | | 0=-4x-3x | | 9x-17=145 | | 2x26=(2x)+(2x) | | 4(3-v)=12-v | | 5/7b=1/6 | | (2n-1)+5=14 | | 24-6n=6(4-n) | | 5m+2-8=24 |

Equations solver categories