2/3x+23/3=3/2x+4

Simple and best practice solution for 2/3x+23/3=3/2x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+23/3=3/2x+4 equation:



2/3x+23/3=3/2x+4
We move all terms to the left:
2/3x+23/3-(3/2x+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x+4)!=0
x∈R
We get rid of parentheses
2/3x-3/2x-4+23/3=0
We calculate fractions
4x/54x^2+(-81x)/54x^2+46x/54x^2-4=0
We multiply all the terms by the denominator
4x+(-81x)+46x-4*54x^2=0
We add all the numbers together, and all the variables
50x+(-81x)-4*54x^2=0
Wy multiply elements
-216x^2+50x+(-81x)=0
We get rid of parentheses
-216x^2+50x-81x=0
We add all the numbers together, and all the variables
-216x^2-31x=0
a = -216; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·(-216)·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{961}=31$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*-216}=\frac{0}{-432} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*-216}=\frac{62}{-432} =-31/216 $

See similar equations:

| 8(x+4)-4x=24 | | 5x-10+13x-10=180 | | 4a+9a=52 | | 3(x-1)=2(x=1)-2 | | t–15=-18 | | -2|x+5|+4=2 | | 12x-48+4x+20=180 | | 157-v=115 | | 21+15x=81 | | x2−2x−8=0 | | -1-(5)=5+x | | 3(b-21)=21-3(b-4) | | 4.6=-1.4+.3w | | 24(4u+4)+28u=70(2u+9) | | 21+15x=8 | | -w+221=56 | | 8x-160=56 | | 20x-100=8x+20 | | 2x^2-160x+375=0 | | 15x=415 | | 6x(x)=6x*x | | 7+9y=52 | | x-2=3(x+6) | | 2(x+7)+1=3(x+7) | | 24=4/3h | | -10.5=x/5-45 | | 4(x-0)=0 | | 4b-5=3b-2 | | 8x-32=7x+10+2 | | 5-10x=5x+5 | | 7=(7x+8)/(8x+8) | | -(5x+3x+9)=-15 |

Equations solver categories