2/3x+28+3(x+11)=50

Simple and best practice solution for 2/3x+28+3(x+11)=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+28+3(x+11)=50 equation:



2/3x+28+3(x+11)=50
We move all terms to the left:
2/3x+28+3(x+11)-(50)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x+3(x+11)-22=0
We multiply parentheses
2/3x+3x+33-22=0
We multiply all the terms by the denominator
3x*3x+33*3x-22*3x+2=0
Wy multiply elements
9x^2+99x-66x+2=0
We add all the numbers together, and all the variables
9x^2+33x+2=0
a = 9; b = 33; c = +2;
Δ = b2-4ac
Δ = 332-4·9·2
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{113}}{2*9}=\frac{-33-3\sqrt{113}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{113}}{2*9}=\frac{-33+3\sqrt{113}}{18} $

See similar equations:

| 10n+20=-52+n | | 4x+3·(3x-4)=6+3x | | 2/3(6x-9)=1/5(10x+5) | | 5=8x+34 | | -11+3(b+5)=7* | | 8(y-4)=-4y-20 | | .-11+3(b+5)=7 | | 7x+14=3x-24 | | 10–(7x–2)+1=8 | | 3x=59,049 | | 106=-14+8x | | x-1+3x=17 | | 7x+14=-3x-24 | | x+x+15+x-12=129 | | 8x-7=4x+28 | | 9/8m-1/6m=4-11/3 | | 5x+0=7x+2 | | 8=4y=20 | | 5x+1=7x=2 | | 23=19–x | | 3y+-6=-18 | | x+2/3+x-1/2=3x-5/4 | | x+1,4x=36 | | 32x^2-76x+27=0 | | (x−14)=16 | | 3x-13+x-3=180 | | a-3=2a+4=20=a+27 | | x−14=16 | | 3x=6.45 | | 1,5x=16,5 | | x2+50x+624=0 | | 26=-7m+12 |

Equations solver categories