2/3x+3=1/5x+10

Simple and best practice solution for 2/3x+3=1/5x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+3=1/5x+10 equation:



2/3x+3=1/5x+10
We move all terms to the left:
2/3x+3-(1/5x+10)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+10)!=0
x∈R
We get rid of parentheses
2/3x-1/5x-10+3=0
We calculate fractions
10x/15x^2+(-3x)/15x^2-10+3=0
We add all the numbers together, and all the variables
10x/15x^2+(-3x)/15x^2-7=0
We multiply all the terms by the denominator
10x+(-3x)-7*15x^2=0
Wy multiply elements
-105x^2+10x+(-3x)=0
We get rid of parentheses
-105x^2+10x-3x=0
We add all the numbers together, and all the variables
-105x^2+7x=0
a = -105; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-105)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-105}=\frac{-14}{-210} =1/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-105}=\frac{0}{-210} =0 $

See similar equations:

| 43+5n=5(n+8) | | 4^2x+5=6 | | 4m+9+5m–12=42. | | 2(x-3)=45 | | 3z=2z−15. | | 0.6r=54 | | 7+14x=12x-26 | | F(x)=5x3-2x2+3x-1 | | 6^x+4=105 | | .9x=3x−36 | | 3y+9-(2y)=9 | | ​4/​3+b=​4/7 | | 3y+9-2y)=9 | | 1y”+-6y’+8y=0 | | 2y+6=12y-24 | | t/4+3=18 | | -7n+35=6(2-5n) | | e-1=0 | |  10-2x=3x-20 | | -12+3x=348 | |  5x-3(x-5)=13 | | -4(5k-7)-2k=-2(9k+5) | | (4/5)x=216 | | 2/3(6x+3)=6x+2 | | 7w-6w+12w-11w+-20w=18 | | 16x-2(7x+9)=-28 | | -10=-6w+2(w+7) | | 0.3(w+1-)=1.8w | | 8r+6r+13r-7r=20 | | 5x^2-30x+29=0 | |  x+4=20 | | 6(8-2r)=-7r+23 |

Equations solver categories