2/3x+4=1/6x-5

Simple and best practice solution for 2/3x+4=1/6x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+4=1/6x-5 equation:



2/3x+4=1/6x-5
We move all terms to the left:
2/3x+4-(1/6x-5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-5)!=0
x∈R
We get rid of parentheses
2/3x-1/6x+5+4=0
We calculate fractions
12x/18x^2+(-3x)/18x^2+5+4=0
We add all the numbers together, and all the variables
12x/18x^2+(-3x)/18x^2+9=0
We multiply all the terms by the denominator
12x+(-3x)+9*18x^2=0
Wy multiply elements
162x^2+12x+(-3x)=0
We get rid of parentheses
162x^2+12x-3x=0
We add all the numbers together, and all the variables
162x^2+9x=0
a = 162; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·162·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*162}=\frac{-18}{324} =-1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*162}=\frac{0}{324} =0 $

See similar equations:

| -7=-5+x/2 | | 7(m-1)=63 | | -2x-6=2-4x-(x-1 | | 6.8g+6=3.8g+24 | | -9-9c-2=-1+c | | -9h+8=-16-h | | 3(x-1)+2(2-x)=3x-7-5x | | 11+m+4+4m=3m+7m | | 13x-1+5x=7x-1+11x | | 11+m+4+4+4m=3m+7m | | 108a^2+6a^2=15a^2 | | 7m=6m-10 | | (5/6)x+7=17 | | 4x+5x+12=15 | | 3x −7+9−2x = x +2 | | 9-2r=r-6 | | 2.4n+4.8=2n-0.4+2.5 | | -3/10z=-2/3 | | 49-4w=3w | | -25=-16t^2+60t | | -7p-7=-9p+9 | | 1/9(2m-16)=1/3(2m | | (60-x)+4x+2=140 | | 2+8n=8n+4 | | -7p=-9+9 | | 2/3(3x+9)=-2(2x÷6) | | k/6=k/5+1 | | v=21-6v | | 138/4x+x=60 | | k/2-k=2 | | X^3+76x+240=0 | | 6.6g+2=3.6g+11 |

Equations solver categories