2/3x+5=4/5x-10

Simple and best practice solution for 2/3x+5=4/5x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+5=4/5x-10 equation:



2/3x+5=4/5x-10
We move all terms to the left:
2/3x+5-(4/5x-10)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x-10)!=0
x∈R
We get rid of parentheses
2/3x-4/5x+10+5=0
We calculate fractions
10x/15x^2+(-12x)/15x^2+10+5=0
We add all the numbers together, and all the variables
10x/15x^2+(-12x)/15x^2+15=0
We multiply all the terms by the denominator
10x+(-12x)+15*15x^2=0
Wy multiply elements
225x^2+10x+(-12x)=0
We get rid of parentheses
225x^2+10x-12x=0
We add all the numbers together, and all the variables
225x^2-2x=0
a = 225; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·225·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*225}=\frac{0}{450} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*225}=\frac{4}{450} =2/225 $

See similar equations:

| 4=22-6m | | 129=-y+275 | | 4x-2(5x+8)=3x+6 | | 19a-7=-3a+12 | | 8=2+4y | | 2(3x+1)-x+4=2x-6 | | 2/3z=3.50 | | 2^x+1=512 | | X+2x=9+6x | | 8=x-6+6x | | 10x-40=200 | | -3+5n=4n+4 | | 2(4x−7)=2x+46 | | 4x+18=33 | | 7k+7=-5+4K | | 13=-2x+6 | | 16-4=(x+5)-64 | | 5x-19=2x+11=16 | | 2w+140=360 | | 1=5−2t | | 5x-19=2x+11+16 | | 12q−10q=6 | | -7x+6=2x-8+40-15x | | 9-r-2=-65 | | 12d−11d=6 | | G=3.14x+87.1 | | 3w−2w=19 | | 10x-11–4x=43 | | 2(2x+3)=5x+15 | | 3(x-1)+8=6x-3(-1+x) | | X-6+x+x=(2x-6)+12 | | 1=3x-3-1 |

Equations solver categories