2/3x+6=1/5x-13

Simple and best practice solution for 2/3x+6=1/5x-13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+6=1/5x-13 equation:



2/3x+6=1/5x-13
We move all terms to the left:
2/3x+6-(1/5x-13)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x-13)!=0
x∈R
We get rid of parentheses
2/3x-1/5x+13+6=0
We calculate fractions
10x/15x^2+(-3x)/15x^2+13+6=0
We add all the numbers together, and all the variables
10x/15x^2+(-3x)/15x^2+19=0
We multiply all the terms by the denominator
10x+(-3x)+19*15x^2=0
Wy multiply elements
285x^2+10x+(-3x)=0
We get rid of parentheses
285x^2+10x-3x=0
We add all the numbers together, and all the variables
285x^2+7x=0
a = 285; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·285·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*285}=\frac{-14}{570} =-7/285 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*285}=\frac{0}{570} =0 $

See similar equations:

| 2+16^3x=10 | | 14a=224 | | 2.3x+25+5.8x+11+x=180,x | | -9=k/20 | | 89=4x+17 | | 4a-2=4a-7 | | F(x)=0.2x+2 | | -7(1-4x)=127 | | |4x−4(x+1)|=4 | | 4x+28=6x+122 | | 2x^2-70x+300=0 | | 0=x^2-150 | | 3x+1=-3x-8 | | 12f-13=11 | | 1-6w=-11 | | 3X-2=-2x+5 | | 16+1-8-h=5h-3 | | 13+x=25/4 | | 13+x=6/1/4 | | 8e+2(5-e)=10 | | 8x-60°=4x+20° | | -8(u-3)=u+3-8 | | 24=4-x-3 | | 8/12v+2/12=7/9v-5/6 | | 16n−n+2n−11n−5n=17 | | 2/5r+2=-8 | | 18a−12a−5a=5 | | √x-5+10=15 | | 3m×-m=-2m | | 2x+1+x+4=x+x+16 | | 5^6x+1=125×5^-4 | | 111/4-1/4x=11.25 |

Equations solver categories