2/3x+6=3/9x+23

Simple and best practice solution for 2/3x+6=3/9x+23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+6=3/9x+23 equation:



2/3x+6=3/9x+23
We move all terms to the left:
2/3x+6-(3/9x+23)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x+23)!=0
x∈R
We get rid of parentheses
2/3x-3/9x-23+6=0
We calculate fractions
18x/27x^2+(-9x)/27x^2-23+6=0
We add all the numbers together, and all the variables
18x/27x^2+(-9x)/27x^2-17=0
We multiply all the terms by the denominator
18x+(-9x)-17*27x^2=0
Wy multiply elements
-459x^2+18x+(-9x)=0
We get rid of parentheses
-459x^2+18x-9x=0
We add all the numbers together, and all the variables
-459x^2+9x=0
a = -459; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-459)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-459}=\frac{-18}{-918} =1/51 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-459}=\frac{0}{-918} =0 $

See similar equations:

| (5x-40)+(5x)=180 | | 9n+4=31 | | 8x-4=3x+2 | | -8+3x=-26 | | b+2=−14−b | | 1b+2=−14−1b | | a=(a)+ | | a-2=a-10 | | -14=76-a | | 1b=6+7 | | -15=-5+2y | | 36^t+16=0 | | x-17=-96 | | 19-13p=-17p- | | r^2-12r-64=0 | | -20+12d–12=20+16d | | 55=2x+3/4 | | 10+7.5x=70 | | 3{x+4}+3=9 | | -720=x-9x/9 | | 11b+18=8b+4 | | y+44=16 | | y/9-4=11 | | 6f=7f+3 | | 16−2t=​2/​​3t+9 | | 8m+5=4m-11 | | -4-6t=-10t | | -69-x=6 | | 8(x+1)=2(4x+1) | | 3x​2​​+9x+17=0 | | 6=k|5-2 | | 9=n/15+10 |

Equations solver categories