2/3x+7=0.45x-11

Simple and best practice solution for 2/3x+7=0.45x-11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+7=0.45x-11 equation:



2/3x+7=0.45x-11
We move all terms to the left:
2/3x+7-(0.45x-11)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
2/3x-0.45x+11+7=0
We multiply all the terms by the denominator
-(0.45x)*3x+11*3x+7*3x+2=0
We add all the numbers together, and all the variables
-(+0.45x)*3x+11*3x+7*3x+2=0
We multiply parentheses
-0x^2+11*3x+7*3x+2=0
Wy multiply elements
-0x^2+33x+21x+2=0
We add all the numbers together, and all the variables
-1x^2+54x+2=0
a = -1; b = 54; c = +2;
Δ = b2-4ac
Δ = 542-4·(-1)·2
Δ = 2924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2924}=\sqrt{4*731}=\sqrt{4}*\sqrt{731}=2\sqrt{731}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{731}}{2*-1}=\frac{-54-2\sqrt{731}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{731}}{2*-1}=\frac{-54+2\sqrt{731}}{-2} $

See similar equations:

| -5/2c=-6/5 | | 11y-6y-14=45.85 | | 42=x/3+38 | | 25=-75-(5)x. | | 154=3y-1+77 | | 8x-25=6x+5 | | (5x-4)+8x=12x+15 | | 13x+23.9=5x-28.9 | | 7y+10=6y+11 | | 3/4x-4=26 | | $22.59=3s+$4.41 | | 2x+4(x-1)=5x-5 | | 8b+3b=11 | | 3/5+2x/3=4/15 | | 3x+7+2x=2(x+14) | | −6(−8x+6)=42x+3042x+30 | | -6=-4+x2 | | -3(x+2)-3x=18 | | 4(2x+9)=-34+46 | | 8(n-6)=-32+4n | | 4x7=5x+9 | | 3.6+z=-9 | | x-5+4=2 | | 70h+130=80+40 | | -3x+32=5. | | 1.2x+5=0.9+10 | | (x+16)+(7x-16)=10x-20 | | 9/36=c/24 | | -2x+8(x-5)=-88 | | 35x+4.99=6.04 | | −13=x−14 | | 34=-4(3x–1) |

Equations solver categories