2/3x+7=11+4/5x

Simple and best practice solution for 2/3x+7=11+4/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+7=11+4/5x equation:



2/3x+7=11+4/5x
We move all terms to the left:
2/3x+7-(11+4/5x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(4/5x+11)+7=0
We get rid of parentheses
2/3x-4/5x-11+7=0
We calculate fractions
10x/15x^2+(-12x)/15x^2-11+7=0
We add all the numbers together, and all the variables
10x/15x^2+(-12x)/15x^2-4=0
We multiply all the terms by the denominator
10x+(-12x)-4*15x^2=0
Wy multiply elements
-60x^2+10x+(-12x)=0
We get rid of parentheses
-60x^2+10x-12x=0
We add all the numbers together, and all the variables
-60x^2-2x=0
a = -60; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-60)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-60}=\frac{0}{-120} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-60}=\frac{4}{-120} =-1/30 $

See similar equations:

| b-(60.25)=121.6 | | (x+61)+(x-39)=180 | | 8x=9-10x | | -5(1-6x)+15=0 | | 33x+1=100 | | 12x-8=4(x-2) | | x/6+6=9-x/6 | | {x}{6}=-8 | | 10=v+3+8 | | X-2x+8=-2x+10 | | 11/12=-4x+1 | | 9x+7x=-17 | | 7(5x+3)-40=10 | | X-2x+8=-2x+20 | | 8x^2+6x+13=0 | | x+.2x=187.97 | | 45x-1200=60x+1800 | | 3+4(x+1)=12x-15 | | 10x−x+5=41 | | 15=-4+v | | n-8+2n=-11 | | x/20+5/4=1/2 | | 5x+(15x-4)=(17x+11)-2x | | x+9=32* | | ^c+14=-5c+4+9c | | 9(r-84)=81 | | (4x-2)=(10x-20) | | 500-150=7x | | 6z-2+3z-4=180 | | 2(2m+4)=4(2+m) | | 4x(-5x)=-13 | | x=280+(1/6*x)+(3/5*x) |

Equations solver categories