2/3x+x=-1/3x+14

Simple and best practice solution for 2/3x+x=-1/3x+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+x=-1/3x+14 equation:



2/3x+x=-1/3x+14
We move all terms to the left:
2/3x+x-(-1/3x+14)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x+14)!=0
x∈R
We add all the numbers together, and all the variables
x+2/3x-(-1/3x+14)=0
We get rid of parentheses
x+2/3x+1/3x-14=0
We multiply all the terms by the denominator
x*3x-14*3x+2+1=0
We add all the numbers together, and all the variables
x*3x-14*3x+3=0
Wy multiply elements
3x^2-42x+3=0
a = 3; b = -42; c = +3;
Δ = b2-4ac
Δ = -422-4·3·3
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-24\sqrt{3}}{2*3}=\frac{42-24\sqrt{3}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+24\sqrt{3}}{2*3}=\frac{42+24\sqrt{3}}{6} $

See similar equations:

| -4(2-5n)=4n+40 | | x^2-8x=50 | | 9x^2-124=0 | | x/4+6+2x/8=36 | | -2n-2+4n=6n-2 | | 4=-2c(-3) | | 7x-3+5=9x+12 | | 5y-13=32y= | | 7+2x÷=5 | | z+0=35 | | 4(6x-1)+x=5(5x-1 | | -6x-(-7x-21)=19 | | 3r^+8r-3=0 | | 11+10(p+10)=4−5(2p+11) | | 3/4+r=2/3 | | -5.6=y+3.9 | | 14+12u=-16+-9u | | 7(m-3)=7m | | 31/2+v=51/10 | | 4x-15=7x+9 | | 13=k2+ 11 | | -7y+11=75+y | | -2.56m-17.8=5.31 | | 18.5=4.1(7+b)/2 | | (2x+30)+(3x)=55 | | -7.8x-10=5.2-(-4x-8.6)-5x | | 18=w+8w | | 6(5x-3)=36 | | 8=u+7u | | 150m-100m+43,875=45,900-175m | | y+3.7=2.9 | | x-8=(1/2)35 |

Equations solver categories