2/3x+x=16-x

Simple and best practice solution for 2/3x+x=16-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+x=16-x equation:



2/3x+x=16-x
We move all terms to the left:
2/3x+x-(16-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x+x-(-1x+16)=0
We add all the numbers together, and all the variables
x+2/3x-(-1x+16)=0
We get rid of parentheses
x+2/3x+1x-16=0
We multiply all the terms by the denominator
x*3x+1x*3x-16*3x+2=0
Wy multiply elements
3x^2+3x^2-48x+2=0
We add all the numbers together, and all the variables
6x^2-48x+2=0
a = 6; b = -48; c = +2;
Δ = b2-4ac
Δ = -482-4·6·2
Δ = 2256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2256}=\sqrt{16*141}=\sqrt{16}*\sqrt{141}=4\sqrt{141}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-4\sqrt{141}}{2*6}=\frac{48-4\sqrt{141}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+4\sqrt{141}}{2*6}=\frac{48+4\sqrt{141}}{12} $

See similar equations:

| -10+m=20 | | 6x+8/2=16 | | 2,5x-10=-1,5 | | 3/10+a=2/5+2a | | 9a=108;12 | | 6c-3c=6 | | 3x+(x-5)=15 | | v-(-18)=-4 | | x/2-1/3=x/3+5/2 | | 4n^2-17n=0 | | 4x/5-3=x-5 | | -3/10+a=2-5+2a | | x²+3x=x | | v-(-18)=-14 | | 10.5=x+22/1 | | 4x-7=9x^2-6x+1 | | 2(h-9)=2 | | 3/4m=-24 | | 2x=31+2x | | V+13-8(v+2)=0 | | a+2=-6678 | | k-k/2=4 | | 2(h-9=2 | | (x)=25x+60 | | 2,5x-10=1,5 | | 15u-9u=18 | | 10x+5=11x+3-x | | -2b=-7b-2 | | 4(x/3-2)=12 | | 50x=-2,500 | | 2.5x-10=1.5 | | 4t+8.40=7t=7.15 |

Equations solver categories