If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x+x=90
We move all terms to the left:
2/3x+x-(90)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
x+2/3x-90=0
We multiply all the terms by the denominator
x*3x-90*3x+2=0
Wy multiply elements
3x^2-270x+2=0
a = 3; b = -270; c = +2;
Δ = b2-4ac
Δ = -2702-4·3·2
Δ = 72876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72876}=\sqrt{4*18219}=\sqrt{4}*\sqrt{18219}=2\sqrt{18219}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-270)-2\sqrt{18219}}{2*3}=\frac{270-2\sqrt{18219}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-270)+2\sqrt{18219}}{2*3}=\frac{270+2\sqrt{18219}}{6} $
| 40x/20=9x+x/13 | | 14x-14=168 | | (1÷5)p=15 | | 2=x-19.3/5.3 | | 3.7x+12=56.4 | | |8n|-3=61 | | -11x+11=-198 | | 2z-1=5(z-3)-3 | | 40x/20=9x+x-7 | | .2(10b+60)=-4(b-12) | | -8.7x=-261 | | 5(x+1)+10x-9=8+3(x-4)+12x | | 6.8(x+2)=81.6 | | 40x/20=9x+x+8*3 | | 17+3c=5+1c | | 1/3x+2=x | | 3x-3+7=4x+2-6+3x | | 40x/20=9x+x+9 | | +15x-3=3x+57 | | 8/15=6x/9 | | -3x-2.5=-0.6 | | 9v+20=13v | | 3(a55)+6=27 | | 3p=1/2 | | 40x/20=9x+x+8 | | 20-3x=80-43x | | -23=-2a-10=a | | 2(x+2)-(8+x)=-3 | | 40x/20=9x+x+7 | | 210+0.97x=412.73 | | 18-3x=-2.4 | | 3(2x−2)=6(x−2) |