2/3x-1=9-1/6x=

Simple and best practice solution for 2/3x-1=9-1/6x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-1=9-1/6x= equation:



2/3x-1=9-1/6x=
We move all terms to the left:
2/3x-1-(9-1/6x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(-1/6x+9)-1=0
We get rid of parentheses
2/3x+1/6x-9-1=0
We calculate fractions
12x/18x^2+3x/18x^2-9-1=0
We add all the numbers together, and all the variables
12x/18x^2+3x/18x^2-10=0
We multiply all the terms by the denominator
12x+3x-10*18x^2=0
We add all the numbers together, and all the variables
15x-10*18x^2=0
Wy multiply elements
-180x^2+15x=0
a = -180; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·(-180)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*-180}=\frac{-30}{-360} =1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*-180}=\frac{0}{-360} =0 $

See similar equations:

| 12=3f | | 40k^2-392k-80=0 | | x+12=35-(x+12) | | 1+5w+5-7w=22 | | 9=1/3m+15 | | 180=3x-82+166 | | 6h^2+68h+22=0 | | 5x+2+10x-3+7x-11+8x-19+13x-31=540 | | 1-8n=-7n | | 3x+47/5=28 | | 10(w+1)=90 | | 54+8p=6(p-4) | | 32m^2-80m+50=0 | | -1/8z+3=-5 | | 2(5x−5)=  40 | | x=π | | −0,2a+12=−19 | | 20f^2-110f+90=0 | | 45/360=x/2π3 | | 54+8p=6(2p-21) | | 3(2x-6)+2x=x-2(3x-4) | | 45/360=x/2π | | 180=2x-38+148 | | 11x^2+6x+7=0 | | 2r-4=-10 | | 5x=5=4 | | 10+7k=8k | | 7=3x-5+5-7 | | 7/9xX=560 | | 6d-6d+2d-2d=12 | | 5x-4-3x=2x+7 | | 54f^2-150=0 |

Equations solver categories