2/3x-24=1/6x-6

Simple and best practice solution for 2/3x-24=1/6x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-24=1/6x-6 equation:



2/3x-24=1/6x-6
We move all terms to the left:
2/3x-24-(1/6x-6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-6)!=0
x∈R
We get rid of parentheses
2/3x-1/6x+6-24=0
We calculate fractions
12x/18x^2+(-3x)/18x^2+6-24=0
We add all the numbers together, and all the variables
12x/18x^2+(-3x)/18x^2-18=0
We multiply all the terms by the denominator
12x+(-3x)-18*18x^2=0
Wy multiply elements
-324x^2+12x+(-3x)=0
We get rid of parentheses
-324x^2+12x-3x=0
We add all the numbers together, and all the variables
-324x^2+9x=0
a = -324; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-324)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-324}=\frac{-18}{-648} =1/36 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-324}=\frac{0}{-648} =0 $

See similar equations:

| 5y-13-y=7 | | 3(x-2)+4(2-x)=x+2(x+1)2 | | 5x+12=2x-18 | | 7x−95+3x−38​=47 | | -12.1=1+6n-3.5 | | (200x-2000)/200x=0.3 | | (6/(x+1)+(2/(x+4)=1 | | -3(2x-9)=-6x-27 | | 12x+6/11-11x=1/22 | | (6/x+1)+(2/x+4)=1 | | 6x-(8x-4)=2(x-4) | | (6/(x+1)+(2/x+4)=1 | | 0(x-2)=x+2 | | (6/(x+1))+(2/x+4))=1 | | 7a-4a=0 | | -3n=3n+6 | | 7y+5=6-1 | | (4y+3)+(3y+7)=(9y-2) | | 0=(6x^2+20x)-(x^2+8x+64) | | (x-7)2=25 | | 70-q-q2q=80 | | 5(2–c)=10(2c–4)–6(3c+1) | | -4(4x-1)=-16x-4 | | y=3/5*1-1 | | -10+8x=4+2(x-12) | | x+22=2x-13 | | (1/3)x-6=2x+1 | | 0,5+2y=-6 | | 13+3(3+8)=x-3 | | 9.2x-3+7.3x+7.3x+9.2x-3=324 | | Y=80x-80 | | -k=6-75+20=-2 |

Equations solver categories