If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x-4-1/20=5/6x-8
We move all terms to the left:
2/3x-4-1/20-(5/6x-8)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-8)!=0We get rid of parentheses
x∈R
2/3x-5/6x+8-4-1/20=0
We calculate fractions
(-108x^2)/720x^2+480x/720x^2+(-600x)/720x^2+8-4=0
We add all the numbers together, and all the variables
(-108x^2)/720x^2+480x/720x^2+(-600x)/720x^2+4=0
We multiply all the terms by the denominator
(-108x^2)+480x+(-600x)+4*720x^2=0
Wy multiply elements
(-108x^2)+2880x^2+480x+(-600x)=0
We get rid of parentheses
-108x^2+2880x^2+480x-600x=0
We add all the numbers together, and all the variables
2772x^2-120x=0
a = 2772; b = -120; c = 0;
Δ = b2-4ac
Δ = -1202-4·2772·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-120}{2*2772}=\frac{0}{5544} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+120}{2*2772}=\frac{240}{5544} =10/231 $
| 15x+25=12x+2 | | -5(3x-1)=2(x-21)-55 | | -8=4n-4n | | 78=4x-1+8x+7 | | 7v+3+4=-11+10v | | 7f-4=7f+26 | | 3(10x+7)=30x-8 | | p-6p=-5 | | –4(h−14)=–12 | | 2(7x+60)+×(5x)=360 | | 10x6x=40 | | 6x=1710x-27 | | 0=-3r-6r | | 7x+17x-7=6(4x+9) | | 82=4w−26 | | –3=3v+15 | | 4v+16=-44 | | 2(3x—8)=50 | | 54=54−9t | | 3g=-5 | | 64x-8=8(8x-1) | | 1/2(x-62)=13+6x | | 64x-8=8(8x-1 | | -4x-2=16 | | 3x+7x-1=16-x+27 | | x+3.1=92 | | -2x+4=-3x-2(3+2x) | | .6(2x-6)=-7(-2x+4) | | 45x+7=45x+72 | | 5m-2(m+2)=-3m+15 | | 21+4x=2(-x+6)-27 | | 1÷x=0.3 |