2/3x-5/6=-5/12x+4

Simple and best practice solution for 2/3x-5/6=-5/12x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-5/6=-5/12x+4 equation:



2/3x-5/6=-5/12x+4
We move all terms to the left:
2/3x-5/6-(-5/12x+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 12x+4)!=0
x∈R
We get rid of parentheses
2/3x+5/12x-4-5/6=0
We calculate fractions
(-180x^2)/1296x^2+864x/1296x^2+540x/1296x^2-4=0
We multiply all the terms by the denominator
(-180x^2)+864x+540x-4*1296x^2=0
We add all the numbers together, and all the variables
(-180x^2)+1404x-4*1296x^2=0
Wy multiply elements
(-180x^2)-5184x^2+1404x=0
We get rid of parentheses
-180x^2-5184x^2+1404x=0
We add all the numbers together, and all the variables
-5364x^2+1404x=0
a = -5364; b = 1404; c = 0;
Δ = b2-4ac
Δ = 14042-4·(-5364)·0
Δ = 1971216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1971216}=1404$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1404)-1404}{2*-5364}=\frac{-2808}{-10728} =39/149 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1404)+1404}{2*-5364}=\frac{0}{-10728} =0 $

See similar equations:

| 300s-20+50s=12 | | .10•x=75.60 | | 10t−6t=12 | | -33-15x=15-12x | | 12-(6x-9)=9 | | (9x-7)=(7x-3)= | | 20u-7+4u=413 | | 7x+9x=126+114 | | 2y-20=20 | | -4x-8=4(-3x2) | | 2y=20-y | | 2y-20-y=180 | | 5x+4(2x+12)=-17 | | 30c-5+10c=-3 | | q/4-10=-9 | | x+12*2x+5=184 | | 7x-17=5x-1 | | 15x-14x=17+15 | | (x+15)+45+(2x)=180 | | .25+.03x=0.1 | | X^2-10x-161=0 | | -21/25=6/5v | | 50x-6+60=16 | | 1=2j-9 | | 2n=-2/3 | | 6a=-5(6a)-5 | | -264+4x=66-6x | | 33/16=3/4x | | 7x-7=6x-7 | | 33/16=1/4x | | -1/6=-1/2b | | 2.2x+1.2=7.8 |

Equations solver categories