If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x-5=1/4x+5
We move all terms to the left:
2/3x-5-(1/4x+5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x+5)!=0We get rid of parentheses
x∈R
2/3x-1/4x-5-5=0
We calculate fractions
8x/12x^2+(-3x)/12x^2-5-5=0
We add all the numbers together, and all the variables
8x/12x^2+(-3x)/12x^2-10=0
We multiply all the terms by the denominator
8x+(-3x)-10*12x^2=0
Wy multiply elements
-120x^2+8x+(-3x)=0
We get rid of parentheses
-120x^2+8x-3x=0
We add all the numbers together, and all the variables
-120x^2+5x=0
a = -120; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-120)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-120}=\frac{-10}{-240} =1/24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-120}=\frac{0}{-240} =0 $
| (4.3×6.2)–(a×1.1)=4.3×(6.2–1.1) | | D=p-2.79 | | 9/3=3/r | | t^3-9t^2+15t=0. | | (25^x)+(5^x+1)=750 | | 2x2+16x=7x+5 | | -x/4-25=60 | | 8p-4p=20+6 | | 21.50t+60=124.50 | | -12+x=4x+8x | | 18w-3(w+2)=9(2w+3)-3w | | –6p+9=–5p | | x2+2.5x=0 | | 45/15=v/3 | | (1+x)-2x-(1+x)10+4x-x=-35 | | -6w=7w−7 | | -9+7+3x-8=4x-2 | | 7(x+4)+4=25 | | 2(b+4)=8+2b | | (1/2)x-16=-4 | | x-5x=-5x+7 | | 2x2+18x=7x+21 | | 12/20=n/5=n | | 4c÷4=12.4 | | 10+4y=14 | | 0.45=x÷12 | | -7a+8=-8a+1 | | 10=5(x=3) | | w²+3w-48=0 | | 8/9=16/m | | -35=(-14)-7x | | 10x+60=25x;x= |