2/3x-5=1/6x+3

Simple and best practice solution for 2/3x-5=1/6x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-5=1/6x+3 equation:



2/3x-5=1/6x+3
We move all terms to the left:
2/3x-5-(1/6x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+3)!=0
x∈R
We get rid of parentheses
2/3x-1/6x-3-5=0
We calculate fractions
12x/18x^2+(-3x)/18x^2-3-5=0
We add all the numbers together, and all the variables
12x/18x^2+(-3x)/18x^2-8=0
We multiply all the terms by the denominator
12x+(-3x)-8*18x^2=0
Wy multiply elements
-144x^2+12x+(-3x)=0
We get rid of parentheses
-144x^2+12x-3x=0
We add all the numbers together, and all the variables
-144x^2+9x=0
a = -144; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-144)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-144}=\frac{-18}{-288} =1/16 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-144}=\frac{0}{-288} =0 $

See similar equations:

| c—2=15.32 | | 5y+37=-2(-7y+1) | | 3(2x+1)=-5(3x-1) | | -17/5,k^2=9/5 | | 14p=266 | | 3x-8=4(x+5) | | 8x+4=2x+20 | | 3/7=6/x+5 | | 3(3x+1)=-4(5x-4) | | x^2-50*x+50*120=0 | | 3(2x+1)=-5(3x-1 | | 3(2x+1)=-5(5x-3) | | 8+2/f+f=44 | | 20t=-420 | | s-5=25.27 | | s-5=$25.27 | | 15t=-885 | | s-$5=$25.27 | | -378=27v | | 4x=11+5-2x | | 7a-4=6a+3 | | 2.3+w/3=-5.2 | | 7+4x-3-4x=3 | | -(3-4x)+3=3x-1 | | 3(x+3)=4x-25 | | x^2-120*x+50*120=0 | | 7y-4=2y-52 | | -93=-s | | 7p=p+42 | | g/3=4 | | b+17=12 | | -g=-13 |

Equations solver categories