2/3x-8/15x=16/5

Simple and best practice solution for 2/3x-8/15x=16/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-8/15x=16/5 equation:



2/3x-8/15x=16/5
We move all terms to the left:
2/3x-8/15x-(16/5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 15x!=0
x!=0/15
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-8/15x-(+16/5)=0
We get rid of parentheses
2/3x-8/15x-16/5=0
We calculate fractions
(-720x^2)/1125x^2+750x/1125x^2+(-600x)/1125x^2=0
We multiply all the terms by the denominator
(-720x^2)+750x+(-600x)=0
We get rid of parentheses
-720x^2+750x-600x=0
We add all the numbers together, and all the variables
-720x^2+150x=0
a = -720; b = 150; c = 0;
Δ = b2-4ac
Δ = 1502-4·(-720)·0
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{22500}=150$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-150}{2*-720}=\frac{-300}{-1440} =5/24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+150}{2*-720}=\frac{0}{-1440} =0 $

See similar equations:

| v/2+17.23=-8.3 | | -30x+32=-2 | | 9(x-5)=x+2212 | | 18y^2+9y-20=0 | | (-1/2)x+8=-4 | | √(3x+1)+2∛(19x+8)=2x^2+x+5 | | -29.25=2+x/5 | | 6(x–9)=6x–54+x | | 4(2x+4)=-5(2x-5)-4x | | -9y^2+3y-1=0 | | 2(2x+3)=-2(4x-4)+5x | | 1.2=-3v+38.7 | | 7x^2-5=-105 | | -3.1+w/6=-22.3 | | 5/6y+3=2/3 | | 7=3+u/5.12 | | 8x+82=50 | | 9.4=5u-3.1 | | 3.7+u/3=-1.1 | | (7m-4)=(4m-6) | | 24000=(24000/x-200)(x+4) | | a/5+8=16 | | 10/4x=10 | | 1/2a-6=3+a | | 3+1/p=56 | | 4.1=-4y+10.5 | | -2b+4=10+b | | 4^x-8=16 | | X+1=6-4x | | -10+4-5+x=7x-5 | | 5(x-6)=3x+4(x-2) | | 4c-½=3½ |

Equations solver categories