If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x=12.x=
We move all terms to the left:
2/3x-(12.x)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
2/3x-(+12.x)=0
We get rid of parentheses
2/3x-12.x=0
We multiply all the terms by the denominator
-(12.x)*3x+2=0
We add all the numbers together, and all the variables
-(+12.x)*3x+2=0
We multiply parentheses
-36x^2+2=0
a = -36; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-36)·2
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*-36}=\frac{0-12\sqrt{2}}{-72} =-\frac{12\sqrt{2}}{-72} =-\frac{\sqrt{2}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*-36}=\frac{0+12\sqrt{2}}{-72} =\frac{12\sqrt{2}}{-72} =\frac{\sqrt{2}}{-6} $
| 4x+39+41=180 | | (1/49)x+1=25/9 | | 1+3y-6=4 | | (¹/⁴⁹)x+¹=²⁵/⁹ | | a/15+15=18 | | 12c+48=180 | | 7h+9=69 | | 38/40=0.95x100=95=x | | 9x5x2=9x | | 2(2x-15)=-6x+8 | | 20x-10-5=5x+10 | | 2(2x-15)=-5x+9 | | -2(5x+5)+2(4x)=20 | | -5-45=a | | 3w=58+w | | 2(2x-15)=2x+8 | | –6t+19=7 | | 2(2x-15)=-38+8 | | t+2=93 | | 10x=15x+180 | | 8x+16=16x+26 | | 2(2x-15)=5x+8 | | -x2/5+15=0 | | -2(1-5k)=-6(1-2k) | | -180*45x=720 | | -3(-x-3)=2x+9 | | |5x-15|=3x+9 | | -3(-x-3)=3+9 | | Y=-x2+2x+18 | | t/–5=–10 | | (4)=6⋅x+3 | | -2x+16=3x+16-5x |