2/3y+1/6=-3/4y+1

Simple and best practice solution for 2/3y+1/6=-3/4y+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3y+1/6=-3/4y+1 equation:



2/3y+1/6=-3/4y+1
We move all terms to the left:
2/3y+1/6-(-3/4y+1)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 4y+1)!=0
y∈R
We get rid of parentheses
2/3y+3/4y-1+1/6=0
We calculate fractions
48y^2/432y^2+288y/432y^2+324y/432y^2-1=0
We multiply all the terms by the denominator
48y^2+288y+324y-1*432y^2=0
We add all the numbers together, and all the variables
48y^2+612y-1*432y^2=0
Wy multiply elements
48y^2-432y^2+612y=0
We add all the numbers together, and all the variables
-384y^2+612y=0
a = -384; b = 612; c = 0;
Δ = b2-4ac
Δ = 6122-4·(-384)·0
Δ = 374544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{374544}=612$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(612)-612}{2*-384}=\frac{-1224}{-768} =1+19/32 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(612)+612}{2*-384}=\frac{0}{-768} =0 $

See similar equations:

| 3x+1+4x+4=90 | | 2/5+4=7/10x-8 | | 24x-12=24 | | -2n+4=-3n+9 | | 2(x-1)^-4=52 | | 5=3-0.5x | | 2(n+3)-n=-n-4(n+2) | | 9(x+3)+x=3(x-7)-8 | | 3^x+2-3^x-2=80 | | 7.4x-2.3=19.9 | | 5^-x+1+5^1+x=26 | | 579.10=500(1+0.29)(1+x)(1+0.03) | | 11x+9x=-4 | | 6(2+y)=3(3-1y) | | 180(n-2)=126n | | -2(t-5)-(t+9)=4 | | 6h+13-5=0 | | 6h2+13h-5=0 | | 4(7+y)=2(7-y)+2 | | 3m-9=5+3m | | 2x×x=512 | | 3(4m+3)-2=12m+7 | | 3x-2=-2x+12 | | 9^2+1=81^x-2/3x | | 5q+11q+2=0 | | 10.1+v÷6=-9.1 | | 2m+1=5m-8 | | 7x-21=5x+87 | | 9+2(x-6)=11-7(x-1) | | (7x+14)(-x-3)=0 | | 6x^2+21x-45=3 | | 4m+2=4m-5 |

Equations solver categories