2/5h+-7=12/5h-2h+3

Simple and best practice solution for 2/5h+-7=12/5h-2h+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5h+-7=12/5h-2h+3 equation:



2/5h+-7=12/5h-2h+3
We move all terms to the left:
2/5h+-7-(12/5h-2h+3)=0
Domain of the equation: 5h!=0
h!=0/5
h!=0
h∈R
Domain of the equation: 5h-2h+3)!=0
h∈R
We add all the numbers together, and all the variables
2/5h-(-2h+12/5h+3)-7+=0
We add all the numbers together, and all the variables
2/5h-(-2h+12/5h+3)=0
We get rid of parentheses
2/5h+2h-12/5h-3=0
We multiply all the terms by the denominator
2h*5h-3*5h+2-12=0
We add all the numbers together, and all the variables
2h*5h-3*5h-10=0
Wy multiply elements
10h^2-15h-10=0
a = 10; b = -15; c = -10;
Δ = b2-4ac
Δ = -152-4·10·(-10)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-25}{2*10}=\frac{-10}{20} =-1/2 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+25}{2*10}=\frac{40}{20} =2 $

See similar equations:

| 3/2(6x+12)=24 | | 2x+6-5x+5=-28 | | C=22(3.14)r | | 2/3(x-3)+1/2x=5 | | (5w+1)=(3w+4)= | | 2x^-1x-45=0 | | 2(x-1)+20+5x+13=180° | | 11x+15=5x-5 | | 2x+3(×-2)=30×= | | 4(3x-2)-4=4(x-5)+40 | | 4x2-8x=3 | | (5w=1)-(3w=4) | | 1/2x+3/2=2 | | 3x-10x=2*(5)+1 | | 4x^=8 | | 15+5p=8 | | -3(2n+50)-7n=-106 | | 4x-8=2x-58 | | 0.2n+9=8(0.4n-1 | | 11-3x+9=-28 | | 2x(-4)=6 | | 5x-3x+7=19 | | -2(m+1=10 | | y=(-61813*2018)+1E+0.8 | | 4/11+z=2/3 | | -104=4b-4(5+4b) | | 3x/5-1x=x/15-28/3 | | 5(k+2)-7÷6=13-(4-k)÷9 | | 7x+y^2;ifx=-4andy=5 | | 4z^2=-8z | | -84=d√3 | | y=(-61813*2018)+1E+08 |

Equations solver categories