2/5w+6(1/5w-4)=32

Simple and best practice solution for 2/5w+6(1/5w-4)=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5w+6(1/5w-4)=32 equation:



2/5w+6(1/5w-4)=32
We move all terms to the left:
2/5w+6(1/5w-4)-(32)=0
Domain of the equation: 5w!=0
w!=0/5
w!=0
w∈R
Domain of the equation: 5w-4)!=0
w∈R
We multiply parentheses
2/5w+6w-24-32=0
We multiply all the terms by the denominator
6w*5w-24*5w-32*5w+2=0
Wy multiply elements
30w^2-120w-160w+2=0
We add all the numbers together, and all the variables
30w^2-280w+2=0
a = 30; b = -280; c = +2;
Δ = b2-4ac
Δ = -2802-4·30·2
Δ = 78160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{78160}=\sqrt{16*4885}=\sqrt{16}*\sqrt{4885}=4\sqrt{4885}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-280)-4\sqrt{4885}}{2*30}=\frac{280-4\sqrt{4885}}{60} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-280)+4\sqrt{4885}}{2*30}=\frac{280+4\sqrt{4885}}{60} $

See similar equations:

| 126-32=r | | -2(h+-4)=4 | | 2(w-4)+3w=7 | | 15=-3(k+-7) | | 5x+14+4x+7=9x-7 | | 2(3x-4)+5=6x+7 | | F+4÷g=6 | | -82=n/52 | | 15=-3(k+-70 | | 7r-4r+4=8r+4-r | | -3x-6=6x+7 | | 5x=14=4x=7+9x=7 | | X-30+2x-120+0.5x+15=180 | | 5x=14=4x=7+9x-7 | | -2x+10(x+6)=-12 | | -15=4(b-16)-19 | | 8/3m-2/5=1/5m-4 | | x-3=5.50 | | X+19=x+8 | | x/(11-4x)=5/16 | | 52+r=-15 | | -22=-7u+3u+9 | | 4-2k=-2 | | 3.0x10^-8x4.0x10^9=1.2x10^ | | x-73=-106 | | 7q-5q-q-1=12 | | 5x-8(x-4)=11 | | 6r-4r+8=9r+8-r | | 2-n^2+14-(7n^2+13+n^2)=0 | | 1/6-2/5m=1/6m-2 | | 4t-19=-17 | | m-1.50=-1.25 |

Equations solver categories