If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/5x+1/4+6=2/8x
We move all terms to the left:
2/5x+1/4+6-(2/8x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 8x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
2/5x-(+2/8x)+6+1/4=0
We get rid of parentheses
2/5x-2/8x+6+1/4=0
We calculate fractions
320x^2/640x^2+256x/640x^2+(-160x)/640x^2+6=0
We multiply all the terms by the denominator
320x^2+256x+(-160x)+6*640x^2=0
Wy multiply elements
320x^2+3840x^2+256x+(-160x)=0
We get rid of parentheses
320x^2+3840x^2+256x-160x=0
We add all the numbers together, and all the variables
4160x^2+96x=0
a = 4160; b = 96; c = 0;
Δ = b2-4ac
Δ = 962-4·4160·0
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-96}{2*4160}=\frac{-192}{8320} =-3/130 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+96}{2*4160}=\frac{0}{8320} =0 $
| 9w=2w+56 | | 2/3*u=18 | | H=1/2x980x400 | | 7^4x=16^x-9 | | 3x+2-5x-1=5-3x15 | | 2/5x+1/4+6=7/3x-2x | | y-2.9=8.42 | | 89y+6=11 | | 3c=90 | | 4x+1=25+2 | | 5x-5+x=-23 | | 2x-5(x-0)=9 | | 20a+15=1 | | 4x-2=-x-7 | | -8(w+5)=-6w-20 | | 13b=23 | | (1/6)x+(2/3)x=5 | | -4y-9(4y-7)=-9+3(6-y) | | v-3.48=9.8 | | 5x+4=4x+18 | | 48-7x=22 | | 1x+6=6x-39 | | 3x+10=3x-20=180 | | 1/2x-2(x+3)=1/3x+5 | | 16t+11=71 | | 3x²+11x+5=0 | | 86x-93=9 | | 5x-4=4x+18 | | 500+250x=30x | | (x/6)+(1/4)=x-(9/4) | | 5x–30=4x | | 2h-4=5h+5 |