2/5x+10+3/5x=2x+5

Simple and best practice solution for 2/5x+10+3/5x=2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+10+3/5x=2x+5 equation:



2/5x+10+3/5x=2x+5
We move all terms to the left:
2/5x+10+3/5x-(2x+5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
2/5x+3/5x-2x-5+10=0
We multiply all the terms by the denominator
-2x*5x-5*5x+10*5x+2+3=0
We add all the numbers together, and all the variables
-2x*5x-5*5x+10*5x+5=0
Wy multiply elements
-10x^2-25x+50x+5=0
We add all the numbers together, and all the variables
-10x^2+25x+5=0
a = -10; b = 25; c = +5;
Δ = b2-4ac
Δ = 252-4·(-10)·5
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{33}}{2*-10}=\frac{-25-5\sqrt{33}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{33}}{2*-10}=\frac{-25+5\sqrt{33}}{-20} $

See similar equations:

| -(2-2a)=-8(4a-4 | | F(3)=-2x+3 | | -6u+45=3(u-9) | | 5(4+2x)-(8x-12=10 | | 35-4x=5x-9x | | 2x+12=18–x | | 4x+8=30x+35 | | -n-9/2=8 | | ×+6y=20 | | 2.3=-3.2+x/5 | | 6x+x²=1 | | 6n-3n=3n+6 | | -8+5x=-20 | | (3x-2)^2=(5x+1)(5x-1) | | 15y=5y+9 | | 5(t-8)/2=t-5 | | 2.3=-3.2=+x/5 | | X²+6x=1 | | 1.6=b=8 | | 2.3=-3.2=x/5 | | 5x+17=3x+49 | | 9x+8/4+8x-2/3=21 | | 5x^2-8x-40=0 | | 6(n-5)-3n=3 | | 5(x+3)-3x=30 | | 4(n+1)=3(n-1) | | 2x–5=37 | | 2x–5=37. | | 4(x+7)-1=4x+27 | | 0=5+17t-16t^2 | | -4.8f=6.4=-8.48 | | 9(w-7)=-2w+47 |

Equations solver categories