2/5x+103/5x=2x+5

Simple and best practice solution for 2/5x+103/5x=2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+103/5x=2x+5 equation:



2/5x+103/5x=2x+5
We move all terms to the left:
2/5x+103/5x-(2x+5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
2/5x+103/5x-2x-5=0
We multiply all the terms by the denominator
-2x*5x-5*5x+2+103=0
We add all the numbers together, and all the variables
-2x*5x-5*5x+105=0
Wy multiply elements
-10x^2-25x+105=0
a = -10; b = -25; c = +105;
Δ = b2-4ac
Δ = -252-4·(-10)·105
Δ = 4825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4825}=\sqrt{25*193}=\sqrt{25}*\sqrt{193}=5\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-5\sqrt{193}}{2*-10}=\frac{25-5\sqrt{193}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+5\sqrt{193}}{2*-10}=\frac{25+5\sqrt{193}}{-20} $

See similar equations:

| 7v+11=15 | | 6-3/4x+1/3=1/2x+15 | | 5y=2y+22+yY | | .−t2=12 | | 2=-0.2056(x)+10.146 | | F(-3)=2x^2-1 | | 0x2+0=0 | | 3+q=56 | | 8-n=-2n+15 | | 3/c-2=3/2c-5 | | 6x=71-23 | | 36≤8 a=12 | | t.4(t+1/4)=3 | | 7(2x-2)=2(7x+1) | | .−5=n2 | | -5=n2 | | F(-5)=5-x-1) | | k.k/2+1/2=3 | | 3(2x-5)=15-4x | | p+7=8, | | -4q-3q-q= | | F(-5)=x2-x-1) | | F(x)=x2-x-1) | | y−1=10.1 | | -3/2x+2.8=-8.2 | | 2p—5=7 | | 12x+7=180-137 | | 3x4=6/7 | | 12x+7+37=180 | | 5y+5=4y-7,y | | 12x+7-37=180 | | M=24-m+10 |

Equations solver categories