2/5x+21=9/8x

Simple and best practice solution for 2/5x+21=9/8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+21=9/8x equation:



2/5x+21=9/8x
We move all terms to the left:
2/5x+21-(9/8x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/5x-(+9/8x)+21=0
We get rid of parentheses
2/5x-9/8x+21=0
We calculate fractions
16x/40x^2+(-45x)/40x^2+21=0
We multiply all the terms by the denominator
16x+(-45x)+21*40x^2=0
Wy multiply elements
840x^2+16x+(-45x)=0
We get rid of parentheses
840x^2+16x-45x=0
We add all the numbers together, and all the variables
840x^2-29x=0
a = 840; b = -29; c = 0;
Δ = b2-4ac
Δ = -292-4·840·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-29}{2*840}=\frac{0}{1680} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+29}{2*840}=\frac{58}{1680} =29/840 $

See similar equations:

| 7x-2(4-3x)=3(x-4)-16 | | 0.05(x)+0.10(x+10)+0.25(x+32)=13 | | 2(6–2w)= | | 3^2x+5=17 | | -9=3x+7(x-17) | | -1=(5z-4)/2+6 | | 42z^2+42z+9=0 | | 67/9=2/3•5x | | 6w+11=3w+8 | | 19.8+.42x=90.72 | | 45-9x-25-x=70 | | 49z^2+42z+9=- | | 2x-9=1/4x+5 | | 6(x-9)=12(x+2) | | 4x+10+3=40-3x | | 7848÷w=36 | | 25s^2-80s+64=0 | | 14x+19x-9+5=-3x+5-9 | | 3x+5+7x=8x+41 | | x+8x-12x=88 | | 2x-5=1600 | | 6y2=50 | | 5/9(x+7)=0.4 | | 5-3(x-7)=2(2-x)=8 | | 4-3x/3x-1=3/2-2x+3/1-3x | | y-8.16=3.5 | | 5-2x=1600 | | -6x+2(5x+12)=-24 | | X^2-18x+16=-2 | | 8x^2+x-21=0 | | 0.092n+15=2 | | 0.08x+52-(1310/x)=0 |

Equations solver categories