2/5x+4=1.5x+8

Simple and best practice solution for 2/5x+4=1.5x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+4=1.5x+8 equation:



2/5x+4=1.5x+8
We move all terms to the left:
2/5x+4-(1.5x+8)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
2/5x-1.5x-8+4=0
We multiply all the terms by the denominator
-(1.5x)*5x-8*5x+4*5x+2=0
We add all the numbers together, and all the variables
-(+1.5x)*5x-8*5x+4*5x+2=0
We multiply parentheses
-5x^2-8*5x+4*5x+2=0
Wy multiply elements
-5x^2-40x+20x+2=0
We add all the numbers together, and all the variables
-5x^2-20x+2=0
a = -5; b = -20; c = +2;
Δ = b2-4ac
Δ = -202-4·(-5)·2
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{110}}{2*-5}=\frac{20-2\sqrt{110}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{110}}{2*-5}=\frac{20+2\sqrt{110}}{-10} $

See similar equations:

| 7a-3=2a+ | | 9x-3=7x+13 | | -47=11x+140 | | 11+7x+7x+11=120 | | x²-220x+8000=0 | | 13y+14=6y+77 | | 9-4p(2p-1)=41 | | /{2}{3}x+5=1 | | 12–3+5=x | | {2}{3}x+5=1 | | 5v-79=6v-90 | | (1/2+3)x4=(3x-1 | | 10,000+50x=15,000–150x | | 66=1/3*3.14*3^2h | | 2x=3x=78 | | 2p+63=42 | | x=-90 | | 89-11x=-43 | | 2×x=0.6 | | –8=–5s+7s | | 5c+2=3c | | 3(x+1)=5(2x+2) | | 5x+4+8x-3+49=180 | | 8=-4(x–1) | | 2/4x-15=-5 | | x2.5=1.2 | | 4y+y-5=180 | | 9x+7=−43 | | 83=10b+3 | | -12+14+3x=2x+2 | | 16=6(x-5)-4x | | 2x+3=x+2+x |

Equations solver categories