If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/5x-7=12/5x-2x+3
We move all terms to the left:
2/5x-7-(12/5x-2x+3)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 5x-2x+3)!=0We add all the numbers together, and all the variables
x∈R
2/5x-(-2x+12/5x+3)-7=0
We get rid of parentheses
2/5x+2x-12/5x-3-7=0
We multiply all the terms by the denominator
2x*5x-3*5x-7*5x+2-12=0
We add all the numbers together, and all the variables
2x*5x-3*5x-7*5x-10=0
Wy multiply elements
10x^2-15x-35x-10=0
We add all the numbers together, and all the variables
10x^2-50x-10=0
a = 10; b = -50; c = -10;
Δ = b2-4ac
Δ = -502-4·10·(-10)
Δ = 2900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2900}=\sqrt{100*29}=\sqrt{100}*\sqrt{29}=10\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{29}}{2*10}=\frac{50-10\sqrt{29}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{29}}{2*10}=\frac{50+10\sqrt{29}}{20} $
| 1/3(9x+42)-5x=50 | | X-x=210 | | 5x^2-13x-9=0 | | Y=3-1.25x | | x2+x-132=0 | | 6(1-5n)=-234 | | (y+8)^2-44=0 | | 3t^2+7t+2=0 | | 3a=8a+15 | | 3x-32=(-7x)=28 | | 6d=312 | | 3(4z−7)=−21+12z | | 5(n-2)-14n=-3n | | 3/4w-1/2w-4=-12 | | 2m-2=2m-2 | | 14+a-10-9=3a+1 | | 3x^2=7x+2=0 | | 2b+9=41 | | 2(x+3+4x)=-12 | | 3y+24=7y | | 2/8=p+4/p | | 2.5x-3=2x-2 | | 5(1+7m)=180 | | 2m-10=23 | | 5(1+4n)=8n+5(1+6n) | | 3x-48=87-12x | | 12/6x=20 | | 1/2(4x+12)=2 | | 2−1/2n=3n+16 | | 9(x-2)=3(x+4) | | 8-3n=53 | | 3n^2-20n-7=0 |