If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/5y+11/20y+4/3=13/12
We move all terms to the left:
2/5y+11/20y+4/3-(13/12)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
Domain of the equation: 20y!=0We add all the numbers together, and all the variables
y!=0/20
y!=0
y∈R
2/5y+11/20y+4/3-(+13/12)=0
We get rid of parentheses
2/5y+11/20y+4/3-13/12=0
We calculate fractions
(-7800y^2)/10800y^2+9600y^2/10800y^2+4320y/10800y^2+5940y/10800y^2=0
We multiply all the terms by the denominator
(-7800y^2)+9600y^2+4320y+5940y=0
We add all the numbers together, and all the variables
9600y^2+(-7800y^2)+10260y=0
We get rid of parentheses
9600y^2-7800y^2+10260y=0
We add all the numbers together, and all the variables
1800y^2+10260y=0
a = 1800; b = 10260; c = 0;
Δ = b2-4ac
Δ = 102602-4·1800·0
Δ = 105267600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{105267600}=10260$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10260)-10260}{2*1800}=\frac{-20520}{3600} =-5+7/10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10260)+10260}{2*1800}=\frac{0}{3600} =0 $
| 6x^2-3x=2-4× | | 3.58=3.5686+0.076x | | 2=8f | | 2x+7x+63=180 | | 7x^2+8x=10x-11 | | −4+-h=3h | | 1.42x-3.449=1.308 | | -7.8(x+6.5)=+25.74 | | r^2-4r-50=7 | | n+6/4=7 | | 14e-4=6e | | 9(x=3)=36 | | 2x+5+2x+3x=7+0 | | 0.135y+0.0257=-0.0742 | | 3(x+5=17 | | 7x/2=98 | | 5x-35=-3x+-2 | | -240=-10x | | 6a-4a-10=18 | | 7x/2=95 | | -14f+12=-11f | | 6z+80=200 | | 6x+9-4x=6 | | 1.3y+39=-1.3 | | 1x+8=3x+7 | | 2x(3x+25)+2x=180 | | 9y+2+3y=26 | | 5x-+5=2x+2 | | –0.6(1.2x+4.5)–3(2.8x–4)= | | 1.9z-19=1.9 | | -33=4x+7 | | -16+16x-4=4(4x-5) |