2/7k=-3+1/14k

Simple and best practice solution for 2/7k=-3+1/14k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/7k=-3+1/14k equation:



2/7k=-3+1/14k
We move all terms to the left:
2/7k-(-3+1/14k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 14k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
2/7k-(1/14k-3)=0
We get rid of parentheses
2/7k-1/14k+3=0
We calculate fractions
28k/98k^2+(-7k)/98k^2+3=0
We multiply all the terms by the denominator
28k+(-7k)+3*98k^2=0
Wy multiply elements
294k^2+28k+(-7k)=0
We get rid of parentheses
294k^2+28k-7k=0
We add all the numbers together, and all the variables
294k^2+21k=0
a = 294; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·294·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{441}=21$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*294}=\frac{-42}{588} =-1/14 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*294}=\frac{0}{588} =0 $

See similar equations:

| -14=9(5p+7)-(7p-1) | | 0y+0y=-4y+8 | | -11n+12=-10n-17 | | 5w/4=35 | | 5c+3c=-15 | | 3x-4(x-33)=62 | | 8m–1=7m+3. | | 8m–1=7m+3 | | 8x+1-3x=6x-3 | | 15=-9(v+5) | | N-12=7-8n | | 3-5y=-25 | | 2/5+1/8t=2 | | 0-5y=-25 | | X^2+84x-160=0 | | 7a=12+3a | | -3+10=12x-5-11x | | 6x-10=4x-4 | | -29+8x=-3(7x+4) | | X/2+3/2=2x/5=-1 | | F(7)=3-x | | (x-5)(x+1)(x-4)=0 | | 6x+11=x-5 | | -6(4p+4)-16=2(2p+8) | | 3.9x+41.5=18.9-7.4x | | 7-5n+2n=20-79 | | 4y+29=13 | | -105+7y+5=4(4y-4)-3 | | 8(c-4)+6=4+c-30 | | 3/2(4)+4(2)=y | | 15-3b=21 | | m=4,6/5 |

Equations solver categories