2/7x+1/7=2/3x-1

Simple and best practice solution for 2/7x+1/7=2/3x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/7x+1/7=2/3x-1 equation:



2/7x+1/7=2/3x-1
We move all terms to the left:
2/7x+1/7-(2/3x-1)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 3x-1)!=0
x∈R
We get rid of parentheses
2/7x-2/3x+1+1/7=0
We calculate fractions
6x/1029x^2+(-686x)/1029x^2+3x/1029x^2+1=0
We multiply all the terms by the denominator
6x+(-686x)+3x+1*1029x^2=0
We add all the numbers together, and all the variables
9x+(-686x)+1*1029x^2=0
Wy multiply elements
1029x^2+9x+(-686x)=0
We get rid of parentheses
1029x^2+9x-686x=0
We add all the numbers together, and all the variables
1029x^2-677x=0
a = 1029; b = -677; c = 0;
Δ = b2-4ac
Δ = -6772-4·1029·0
Δ = 458329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{458329}=677$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-677)-677}{2*1029}=\frac{0}{2058} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-677)+677}{2*1029}=\frac{1354}{2058} =677/1029 $

See similar equations:

| 2x/7+1/7=2x/3-1 | | 3(n+4)=1/2(6n+14) | | -5/2=-6/3x-8/3 | | 10x-6x+3=0 | | 7(y+5)=4y+14 | | 3x^2+18-15x=0 | | E^x=11 | | -(2h+4)=5(h-1)+3 | | 16t^2=20t | | 4^3x-4=2^2x+4 | | 4^y+6=15 | | s2+11+24=0 | | 3x^2+2=0.1-x | | 3(4q-4)=36 | | 3x+(5x×2)=25 | | 2x+10=2(36+)10=48+10=58 | | -13x=x+5 | | x-(x*0.2)=10 | | 5(x-2)=9x+3-4x | | 3x(x-3)=11x^2-12x | | X=1350+.12x | | m2− 2= 1 | | −4x+3=−11 | | 10=-8+2m | | 73-2x=9-2x | | 2^3x=8 | | 15+2d=-5 | | 5x=16+x. | | 2j+-3=15 | | b/3-14=-10 | | -2(1–z)+3=7 | | 6+9+4x-19=180 |

Equations solver categories