2/7x+3/14=1/8x+6

Simple and best practice solution for 2/7x+3/14=1/8x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/7x+3/14=1/8x+6 equation:



2/7x+3/14=1/8x+6
We move all terms to the left:
2/7x+3/14-(1/8x+6)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 8x+6)!=0
x∈R
We get rid of parentheses
2/7x-1/8x-6+3/14=0
We calculate fractions
1344x^2/784x^2+224x/784x^2+(-98x)/784x^2-6=0
We multiply all the terms by the denominator
1344x^2+224x+(-98x)-6*784x^2=0
Wy multiply elements
1344x^2-4704x^2+224x+(-98x)=0
We get rid of parentheses
1344x^2-4704x^2+224x-98x=0
We add all the numbers together, and all the variables
-3360x^2+126x=0
a = -3360; b = 126; c = 0;
Δ = b2-4ac
Δ = 1262-4·(-3360)·0
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{15876}=126$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-126}{2*-3360}=\frac{-252}{-6720} =3/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+126}{2*-3360}=\frac{0}{-6720} =0 $

See similar equations:

| 13x+5=7(x+5) | | 8w=6330w= | | 6x-21=5x-11 | | x*1.2=16 | | (x+3)-2(2-5x)=5(x+4)-3 | | x^2-10x+128=0 | | 2.5x+2.3=7.1 | | y/5+1/2=5y | | 3(3(x+4)-2)=x-2 | | 3(3(x+4)-2=x-2 | | 10+3j=14 | | 5+3(x-1)=5x-1 | | 5m+12m=8 | | (2)3(n-5)=21 | | x^2-8^2-10(8)+16(8)-64=0 | | 2x+11=-13+2x | | 4(2x+1+9=45 | | 5*6x=7*8x | | 2*3x=4x | | (3x-15)+(x+5)=90 | | x+23+x-5=96 | | 9(x+3)=-73 | | 5/9/10=4/9/x | | 40x*x+94x-39=0 | | t^2+6t+1=0 | | 2a+7=4+3 | | 5x+12=2-x | | 5x*x-104x+620=0 | | 17y^2-33-16y=0 | | 2a+3=8+4a | | 4(2x-3=-36 | | 1800=2(4x+6x) |

Equations solver categories